153 research outputs found
Enterohemorrhagic Escherichia coli colonization of human colonic epithelium in vitro and ex vivo
Enterohemorrhagic E. coli (EHEC) are important foodborne pathogens causing gastroenteritis and more severe complications such as hemorrhagic colitis and hemolytic uremic syndrome. Pathology is most pronounced in the colon, but to date there is no direct clinical evidence showing EHEC binding to colonic epithelium in patients. In this study, we investigated EHEC adherence to the human colon by using in vitro organ culture (IVOC) of colonic biopsies and polarized T84 colon carcinoma cells. We showed for the first time that EHEC colonized human colonic biopsies by forming typical attaching/effacing (A/E) lesions which were dependent on EHEC type III secretion (T3S) and binding of the outer membrane protein intimin to the Translocated intimin receptor (Tir). A/E lesion formation was dependent on oxygen levels and suppressed under oxygen-rich culture conditions routinely used for IVOC. In contrast, EHEC adherence to polarized T84 cells occurred independently of T3S and intimin and did not involve Tir translocation into the host cell membrane. Neither colonization of biopsies nor T84 cells was significantly affected by expression of Shiga toxins. Our study suggests that EHEC colonize and form stable A/E lesions on the human colon which is likely to contribute to intestinal pathology during infection. Furthermore, care needs to be taken when using cell culture models as they might not reflect the in vivo situation
Statistical mechanics for static granular media: open questions
International audienceThe theoretical description of granular materials, or assemblies of macroscopic particles, is a formidable task. Not only are granular materials out of thermal equilibrium, but they are also characterized by dissipative interactions and by static friction. Following a suggestion by S.~F. Edwards, researchers have investigated the possible existence of a statistical mechanics of static granular systems, which would permit the description of macroscopic properties of mechanically stable granular assemblies from just a few parameters. The formulation and the validity of such an approach is still a matter of debate. This ''emerging area'' focuses on three important questions concerning such a statistical mechanics approach. First, we consider how the phase space of interest is affected by the requirement of mechanical stability. Second, we explore how the intensive parameters analogous to temperature can be determined from experimental or numerical data. Finally, we contrast different ways to express the granular counterpart to the classical Hamiltonian, known as the volume function
Differential activation of killer cells in the circulation and the lung: a study of current smoking status and chronic obstructive pulmonary disease (COPD)
Background:CD8+ T-lymphocytes, natural killer T-like cells (NKT-like cells, CD56+CD3+) and natural killer cells (NK cells, CD56+CD3−) are the three main classes of human killer cells and they are implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Activation of these cells can initiate immune responses by virtue of their production of inflammatory cytokines and chemokines that cause lung tissue damage, mucus hypersecretion and emphysema. The objective of the current study was to investigate the activation levels of human killer cells in healthy non-smokers, healthy smokers, ex-smokers with COPD and current smokers with COPD, in both peripheral blood and induced sputum.
Methods/Principal Findings:After informed consent, 124 participants were recruited into the study and peripheral blood or induced sputum was taken. The activation states and receptor expression of killer cells were measured by flow cytometry. In peripheral blood, current smokers, regardless of disease state, have the highest proportion of activated CD8+ T-lymphocytes, NKT-like cells and NK cells compared with ex-smokers with COPD and healthy non-smokers. Furthermore, CD8+ T-lymphocyte and NK cell activation is positively correlated with the number of cigarettes currently smoked. Conversely, in induced sputum, the proportion of activated killer cells was related to disease state rather than current smoking status, with current and ex-smokers with COPD having significantly higher rates of activation than healthy smokers and healthy non-smokers.
Conclusions: A differential effect in systemic and lung activation of killer cells in COPD is evident. Systemic activation appears to be related to current smoking whereas lung activation is related to the presence or absence of COPD, irrespective of current smoking status. These findings suggest that modulating killer cell activation may be a new target for the treatment of COPD
Visualising and Quantifying Cereal Root Responses to Phosphorus
Phosphorus (P) and nitrogen macronutrient deficiencies remain a primary constraint to global agricultural production. Expectations for decreasing fertiliser availability and increased food demand provide impetus for improving plant nutrient efficiencies. While significant genetic advances have been made based on plant shoot characteristics, the root system traits have remained largely untargeted in breeding programs. This is largely due to the difficulties in rapidly assessing root system attributes. Since the spatial distribution of the root system (root architecture) determines the edaphic resources available to plants, it is logical to target root architecture in an effort to improve plant nutrient acquisition efficiency. Characteristics such as localised root proliferation in response to high nutrient patches could be improved to increase nutrient capture from point source fertiliser applications
Array-based measurements of aero-allergen-specific IgE correlate with skin-prick test reactivity in asthma regardless of specific IgG4 or total IgE measurements
© 2021 Elsevier B.V. Skin prick testing (SPT) and measurement of serum allergen-specific IgE (sIgE) are used to investigate asthma and other allergic conditions. Measurement of serum total IgE (tIgE) and allergen-specific IgG4 (sIgG4) may also be useful. The aim was to ascertain the correlation between these serological parameters and SPT. Sera from 60 suspected asthmatic patients and 18 healthy controls were assayed for sIgE and sIgG4 reactivity against a panel of 70 SPT allergen preparations, and for tIgE. The patients were also assessed by skin prick tests for reactivity to cat, dog, house dust mite and grass allergens. Over 50% of the patients had tIgE levels above the 75th percentile of the controls. 58% of patients and 39% of controls showed sIgE reactivity to ≥1 allergen. The mean number of allergens detected by sIgE was 3.1 in suspected asthma patients and 0.9 in controls. 58% of patients and 50% of controls showed sIgG4 reactivity to ≥1 allergen. The mean number of allergens detected by sIgG4 was 2.5 in patients and 1.7 in controls. For the patients, a strong correlation was observed between clinical SPT reactivity and serum sIgE levels to cat, dog, house dust mite (HDM) and grass allergens. SPT correlations using sIgE/sIgG4 or sIgE/tIgE ratios were not markedly higher. The measurement of serum sIgE by microarray using SPT allergen preparations showed good correlation with clinical SPT reactivity to cat, dog, HDM and grass allergens. This concordance was not improved by measuring tIgE or sIgG4
Unbiased analysis of the impact of micropatterned biomaterials on macrophage behaviour provides insights beyond pre-defined polarisation states
Macrophages are master regulators of immune responses towards implanted biomaterials. The activation state adopted by macrophages in response to biomaterials determines their own phenotype and function as well as those of other resident and infiltrating immune and non-immune cells in the area. A wide spectrum of macrophage activation states exists, with M1 (pro-inflammatory) and M2 (anti-inflammatory) representing either ends of the spectrum. In biomaterials research, cellinstructive surfaces that favour or induce M2 macrophages have been considered as beneficial due to the anti-inflammatory and pro-regenerative properties of these cells. In this study, we used a gelatin methacryloyl (GelMA) hydrogel platform to determine whether micropatterned surfaces can modulate the phenotype and function of human macrophages. The effect of microgrooves/ridges and micropillars on macrophage phenotype, function, and gene expression profile were assessed using conventional methods (morphology, cytokine profile, surface marker expression, phagocytosis) and gene microarrays. Our results demonstrated that micropatterns did induce distinct gene expression profiles in human macrophages cultured on microgrooves/ridges and micropillars. Significant changes were observed in genes related to primary metabolic processes such as transcription, translation, protein trafficking, DNA repair and cell survival. However, interestingly conventional phenotyping methods, relying on surface marker expression and cytokine profile, were not able to distinguish between the different conditions, and indicated no clear shift in cell activation towards an M1 or M2 phenotypes. This highlights the limitations of studying the effect of different physicochemical conditions on macrophages by solely relying on conventional markers that are primarily developed to differentiate between cytokine polarised M1 and M2 macrophages. We therefore, propose the adoption of unbiased screening methods in determining macrophage responses to biomaterials. Our data clearly shows that the exclusive use of conventional markers and methods for determining macrophage activation status could lead to missed opportunities for understanding and exploiting macrophage responses to biomaterials
Canonical Wnt signals combined with suppressed TGFβ/BMP pathways promote renewal of the native human colonic epithelium
Background: A defining characteristic of the human intestinal epithelium is that it is the most rapidly renewing tissue in the body. However, the processes underlying tissue renewal and the mechanisms that govern their coordination have proved difficult to study in the human gut. Objective: To investigate the regulation of stem cell-driven tissue renewal by canonical Wnt and TGFβ/bone morphogenetic protein (BMP) pathways in the native human colonic epithelium. Design: Intact human colonic crypts were isolated from mucosal tissue samples and placed into 3D culture conditions optimised for steady-state tissue renewal. High affinity mRNA in situ hybridisation and immunohistochemistry were complemented by functional genomic and bioimaging techniques. The effects of signalling pathway modulators on the status of intestinal stem cell biology, crypt cell proliferation, migration, differentiation and shedding were determined. Results: Native human colonic crypts exhibited distinct activation profiles for canonical Wnt, TGFβ and BMP pathways. A population of intestinal LGR5/OLFM4-positive stem/progenitor cells were interspersed between goblet-like cells within the crypt-base. Exogenous and crypt cell-autonomous canonical Wnt signals supported homeostatic intestinal stem/progenitor cell proliferation and were antagonised by TGFβ or BMP pathway activation. Reduced Wnt stimulation impeded crypt cell proliferation, but crypt cell migration and shedding from the crypt surface were unaffected and resulted in diminished crypts. Conclusions: Steady-state tissue renewal in the native human colonic epithelium is dependent on canonical Wnt signals combined with suppressed TGFβ/BMP pathways. Stem/progenitor cell proliferation is uncoupled from crypt cell migration and shedding, and is required to constantly replenish the crypt cell population
Real-world tyrosine kinase inhibitor treatment pathways, monitoring patterns and responses in patients with chronic myeloid leukaemia in the United Kingdom: the UK TARGET CML study.
Management of chronic myeloid leukaemia (CML) has recently undergone dramatic changes, prompting the European LeukemiaNet (ELN) to issue recommendations in 2013; however, it remains unclear whether real-world CML management is consistent with these goals. We report results of UK TARGET CML, a retrospective observational study of 257 patients with chronic-phase CML who had been prescribed a first-line TKI between 2013 and 2017, most of whom received first-line imatinib (n = 203). Although 44% of patients required ≥1 change of TKI, these real-world data revealed that molecular assessments were frequently missed, 23% of patients with ELN-defined treatment failure did not switch TKI, and kinase domain mutation analysis was performed in only 49% of patients who switched TKI for resistance. Major molecular response (MMR; BCR-ABL1IS ≤0·1%) and deep molecular response (DMR; BCR-ABL1IS ≤0·01%) were observed in 50% and 29%, respectively, of patients treated with first-line imatinib, and 63% and 54%, respectively, receiving a second-generation TKI first line. MMR and DMR were also observed in 77% and 44% of evaluable patients with ≥13 months follow-up, receiving a second-generation TKI second line. We found little evidence that cardiovascular risk factors were considered during TKI management. These findings highlight key areas for improvement in providing optimal care to patients with CML
Ischaemic strokes in patients with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia: associations with iron deficiency and platelets.
<div><p>Background</p><p>Pulmonary first pass filtration of particles marginally exceeding ∼7 µm (the size of a red blood cell) is used routinely in diagnostics, and allows cellular aggregates forming or entering the circulation in the preceding cardiac cycle to lodge safely in pulmonary capillaries/arterioles. Pulmonary arteriovenous malformations compromise capillary bed filtration, and are commonly associated with ischaemic stroke. Cohorts with CT-scan evident malformations associated with the highest contrast echocardiographic shunt grades are known to be at higher stroke risk. Our goal was to identify within this broad grouping, which patients were at higher risk of stroke.</p><p>Methodology</p><p>497 consecutive patients with CT-proven pulmonary arteriovenous malformations due to hereditary haemorrhagic telangiectasia were studied. Relationships with radiologically-confirmed clinical ischaemic stroke were examined using logistic regression, receiver operating characteristic analyses, and platelet studies.</p><p>Principal Findings</p><p>Sixty-one individuals (12.3%) had acute, non-iatrogenic ischaemic clinical strokes at a median age of 52 (IQR 41–63) years. In crude and age-adjusted logistic regression, stroke risk was associated not with venous thromboemboli or conventional neurovascular risk factors, but with low serum iron (adjusted odds ratio 0.96 [95% confidence intervals 0.92, 1.00]), and more weakly with low oxygen saturations reflecting a larger right-to-left shunt (adjusted OR 0.96 [0.92, 1.01]). For the same pulmonary arteriovenous malformations, the stroke risk would approximately double with serum iron 6 µmol/L compared to mid-normal range (7–27 µmol/L). Platelet studies confirmed overlooked data that iron deficiency is associated with exuberant platelet aggregation to serotonin (5HT), correcting following iron treatment. By MANOVA, adjusting for participant and 5HT, iron or ferritin explained 14% of the variance in log-transformed aggregation-rate (p = 0.039/p = 0.021).</p><p>Significance</p><p>These data suggest that patients with compromised pulmonary capillary filtration due to pulmonary arteriovenous malformations are at increased risk of ischaemic stroke if they are iron deficient, and that mechanisms are likely to include enhanced aggregation of circulating platelets.</p></div
- …