95 research outputs found

    Combined inkjet printing and infrared sintering of silver nanoparticles using a swathe-by-swathe and layer-by-layer approach for 3-dimensional structures

    Get PDF
    Despite the advancement of additive manufacturing (AM)/3-dimensional (3D) printing, single-step fabrication of multifunctional parts using AM is limited. With the view of enabling multifunctional AM (MFAM), in this study, sintering of metal nanoparticles was performed to obtain conductivity for continuous line inkjet printing of electronics. This was achieved using a bespoke three dimensional (3D) inkjet-printing machine, JETx®, capable of printing a range of materials and utilizing different post processing procedures to print multi-layered 3D structures in a single manufacturing step. Multiple layers of silver were printed from an ink containing silver nanoparticles (AgNPs) and infra-red sintered using a swathe-by-swathe (SS) and layer-by-layer sintering (LS) regime. The differences in the heat profile for the SS and LS was observed to influence the coalescence of the AgNPs. Void percentage of both SS and LS samples was higher towards the top layer than the bottom layer due to relatively less IR exposure in the top than the bottom. The results depicted a homogeneous microstructure for LS of AgNPs and showed less deformation compared to the SS. Electrical resistivity of the LS tracks (13.6 ± 1μΩ cm) was lower than the SS tracks (22.5 ± 1 μΩ cm). This study recommends the use of LS method to sinter the AgNPs to obtain a conductive track in 25% less time than SS method for MFAM

    A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants

    Get PDF
    We propose a strategy for creating tuneable 3D printed drug delivery devices. 3D printing offers the opportunity for improved compliance and patient treatment outcomes through personalisation, but bottlenecks include finding formulations that provide a choice of drug loading and release rate, are tuneable and avoid the need for surgical removal. Our solution is to exploit 3D inkjet printing freedoms. We use a reactive prodrug that can polymerize into drug-attached macromolecules during 3D printing, and by tuning the hydrophilicity we can facilitate or hinder hydrolysis, which in turn controls the drug release. To demonstrate this approach, we attach ibuprofen to 2-hydroxyethyl acrylate through a cleavable ester bond, formulate it for inkjet 3D printing, and then print to produce a solid dosage form. This allows a much higher loading than is usually achievable-in our case up to 58 wt%. Of equal importance, the 3D inkjet printing freedoms mean that our drug delivery device is highly tuneable: by selection of spacer monomers to adjust the hydrophilicity; through geometry; by spatially varying the components. Consequently, we create bespoke, hierarchical release systems, from the molecular to macro. This approach represents a new paradigm for the formulation of printable inks for drug-loaded medical devices

    Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles

    Get PDF
    Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorption on the surface of nanoparticles (NPs) is vital for the development of clinically important protein-based nanomedicines. In this work, new insights on the effect of the different orientation of cytochrome c (cyt c) bound to gold nanoparticles (GNPs) using various ligands on its apoptotic activity is reported. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS), electrochemical and circular dichroism (CD) analyses are used to investigate the characteristics of cyt c orientation and structure on functionalized GNPs. These studies indicate that the orientation and position of the heme ring inside the cyt c structure can be altered by changing the surface chemistry on the GNPs. A difference in the apoptosis inducing capability because of different orientation of cyt c bound to the GNPs is observed. These findings indicate that the biological activity of a protein can be modulated on the surface of NPs by varying its adsorption orientation. This study will impact on the rational design of new nanoscale biosensors, bioelectronics, and nanoparticle-protein based drugs

    The seroprevalence of hepatitis C virus infection among children and their mothers attending for dental care in Glasgow, Scotland, United Kingdom

    Get PDF
    This paper describes a voluntary anonymous survey to investigate the seroprevalence of Hepatitis C (HCV) in children in Glasgow, UK attending a Dental Hospital and the proportion of HCV positive mothers who have a child who is HCV seropositive. The study was undertaken among children and accompanying parents and household contacts attending a general anaesthetic assessment clinic at Glasgow Dental Hospital and School. Children were asked to provide an oral fluid specimen for HCV testing. Accompanying adults were asked to provide demographic data on the child and information on familial risk factors for HCV infection using a standardised questionnaire. Birth mothers were also asked to provide an oral fluid specimen. Specimens and questionnaires were linked by a unique anonymous study number. Between June 2009 and December 2011, samples were collected from 2141 children and 1698 mothers. None of the samples from the children were HCV seropositive but 16 (0.9%, 95% CI 0.6% to 1.5%) of the specimens from mothers were HCV antibody positive. In summary, the prevalence of HCV seropositivity in the birth mothers of the children was similar to that estimated in the general population served by the hospital and showed no evidence of mother-to-child transmission of HCV

    Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study.

    Get PDF
    BACKGROUND: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). OBJECTIVE: We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. METHODS: We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. RESULTS: Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. CONCLUSION: APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment.T.C. is supported by National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland. A.C. has a Wellcome Trust Postdoctoral Training Fellowship for Clinicians (103413/Z/13/Z). K.O. is supported by funding from BBSRC, MRC, Wellcome Trust and GSK. R.D. and D.S.K are funded by National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK. C.S. and S.E. are supported by the German Federal Ministry of Education and Research (BMBF 01 EO 0803 grant to the Center of Chronic immunodeficiency and BMBF 01GM1111B grant to the PID-NET initiative). S.N.F is supported in part by the Southampton UK National Institute for Health Research (NIHR) Wellcome Trust Clinical Research Facility and NIHR Respiratory Biomedical Research Unit. M.A.A.I. is funded by NHS Innovation London and King’s College Hospital Charitable Trust. A.F., S.L., A.D., F.R-L and S.K. are supported by the European Union’s 7th RTD Framework Programme (ERC advanced grant PID-IMMUNE contract 249816) and a government grant managed by the French Agence Nationale de la Recherche as part of the "Investments for the Future" program (ANR-10-IAHU-01). S.L. is supported by the Agence Nationale de la Recherche (ANR) (ANR-14-CE14-0028-01), the Foundation ARC pour la Recherche sur le Cancer (France), the Rare Diseases Foundation (France) and François Aupetit Association (France). S.L. is a senior scientist and S.K is a researcher at the Centre National de la Recherche Scientifique-CNRS (France). A.D. and S.K. are supported by the “Institut National de la Santé et de la Recherche Médicale". S.K. also supported by the Fondation pour la Recherche Médicale (grant number: ING20130526624), la Ligue Contre le Cancer (Comité de Paris) and the Centre de Référence Déficits Immunitaires Héréditaires (CEREDIH). S.O.B is supported by the Higher Education Funding Council for England. B.V. is supported by the UK Biotechnology and Biological Sciences Research Council [BB/I007806/1], Cancer Research UK [C23338/A15965) and the National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre. B.V. is consultant to Karus Therapeutics (Oxford, UK). S.N. is a Wellcome Trust Senior Research Fellow in Basic Biomedical Science (095198/Z/10/Z). S.N. is also supported by the European Research Council Starting grant 260477, the EU FP7 collaborative grant 261441 (PEVNET project) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, UK. A.M.C. is funded by the Medical Research Council, British Lung Foundation, University of Sheffield and Cambridge NIHR-BRC. Research in A.M.C. laboratory has received non-commercial grant support from GSK, Novartis, and MedImmune.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jaci.2016.06.02

    Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip

    Get PDF
    To design effective immunomodulatory implants, innate immune cell interactions at the surface of biomaterials need to be controlled and understood. The architectural design freedom of two-photon polymerization is used to produce arrays of surface-mounted, geometrically diverse 3D polymer objects. This reveals the importance of the interplay between architecture and materials chemistry in determining human macrophage fate in vitro. The ChemoArchiChip identifies key structure-function relationships and design rules from machine learning models to build a mechanistic understanding of cell attachment and polarization. Object shape, vertex/cone angle, and size are key drivers of attachment. Particular shapes are found to heavily modulate pro- or anti-inflammatory cell polarization, while triangular pyramids drastically reduce or even eliminate attachment. Caveola-dependent endocytosis is a principal mechanism by which cells respond to objects with sharp points; i.e., low vertex/cone angles. The discovery of these putative design rules points to surfaces decorated with architectures to augment implant performance

    Investigation of the effect of relative humidity on polymers by depth sensing indentation

    Get PDF
    This article was published in the serial, Journal of Materials Science [© Springer]. The definitive version is available from: http://www.springerlink.com/content/y2g413h8h2l6044m/Stereolithography (SL) resins absorb varying amounts of moisture dependent on the relative humidities, which can significantly affect the mechanical properties. In this work, the influence of relative humidity (RH) on the mechanical behaviour of an SL resin is investigated using depth sensing indentation (DSI). The samples were conditioned by two methods. In the first method, samples were pre-conditioned at 33.5, 53.8, 75.3 and 84.5% RH using saturated salt solutions. These preconditioned samples were tested at 33.5% RH, using a humidity control unit (HCU) to control RH in the DSI system. In the second method, samples were conditioned and tested at 33.5, 53.8, 75.3 and 84.5% RH by regulating humidity in the DSI system using the HCU. Temperature was kept constant at 22.5 C for the conditioning and DSI testing. It was seen that hardness and modulus decreased with increasing RH and conditioning time but recovered significantly when tested after drying. This study demonstrates that RH needs to be taken into account during the DSI testing of polymers

    Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices

    Get PDF
    open access articleAs the understanding of disease grows, so does the opportunity for personalization of therapies targeted to the needs of the individual. To bring about a step change in the personalization of medical devices it is shown that multi-material inkjet-based 3D printing can meet this demand by combining functional materials, voxelated manufacturing, and algorithmic design. In this paper composite structures designed with both controlled deformation and reduced biofilm formation are manufactured using two formulations that are deposited selectively and separately. The bacterial biofilm coverage of the resulting composites is reduced by up to 75% compared to commonly used silicone rubbers, without the need for incorporating bioactives. Meanwhile, the composites can be tuned to meet user defined mechanical performance with ±10% deviation. Device manufacture is coupled to finite element modelling and a genetic algorithm that takes the user-specified mechanical deformation and computes the distribution of materials needed to meet this under given load constraints through a generative design process. Manufactured products are assessed against the mechanical and bacterial cell-instructive specifications and illustrate how multifunctional personalization can be achieved using generative design driven multi-material inkjet based 3D printing
    corecore