15 research outputs found

    Grain-Size Analysis of the Late Pleistocene Sediments in the Corinth Rift: Insights into Strait Influenced Hydrodynamics and Provenance of an Active Rift Basin

    Get PDF
    Under embargo until: 2023-12-08Grain-size analysis of the sediments in borehole M0079A, which is located in the Corinth Rift, was used to explore hydrodynamic conditions and provenance in the Late Pleistcene Corinth Rift. Grain-size populations that were sensitive to the sedimentary environments were characterized by frequency distribution, particle size-standard deviation, and probability cumulative curves. Our results indicate the grain-size population component in the range 0.15-0.25 μm may be used as a sensitive proxy for hyperpycnal flows, which have commonly been triggered by river floods from the southern margin of the rift since ca. 0.593-0.613 Ma. The high-density plumes derived from the longer rivers of the southern rift that were prevalent before ca. 0.593-0.613 Ma. When sediment is supplied as hemipelagic deposition, the proportion of the total grain-size population that is in the 0.3-0.5 μm range becomes an index for suspension fall-out deposits. The core shows coarser sediments during the marine periods and this may be linked to the current circulation related to the Ishtmia Strait opening. The study thus illustrates how the establishment of interbasinal straits can influence the details of sedimentary hydrodynamics in the deep- water axis of an adjacent depocenter.acceptedVersio

    High-resolution record reveals climate-driven environmental and sedimentary changes in an active rift

    Get PDF
    Young rifts are shaped by combined tectonic and surface processes and climate, yet few records exist to evaluate the interplay of these processes over an extended period of early rift-basin development. Here, we present the longest and highest resolution record of sediment flux and paleoenvironmental changes when a young rift connects to the global oceans. New results from International Ocean Discovery Program (IODP) Expedition 381 in the Corinth Rift show 10s–100s of kyr cyclic variations in basin paleoenvironment as eustatic sea level fluctuated with respect to sills bounding this semi-isolated basin, and reveal substantial corresponding changes in the volume and character of sediment delivered into the rift. During interglacials, when the basin was marine, sedimentation rates were lower (excepting the Holocene), and bioturbation and organic carbon concentration higher. During glacials, the basin was isolated from the ocean, and sedimentation rates were higher (~2–7 times those in interglacials). We infer that reduced vegetation cover during glacials drove higher sediment flux from the rift flanks. These orbital-timescale changes in rate and type of basin infill will likely influence early rift sedimentary and faulting processes, potentially including syn-rift stratigraphy, sediment burial rates, and organic carbon flux and preservation on deep continental margins worldwide

    High-resolution record revealsclimate-driven environmental andsedimentary changes in an active rift

    Get PDF
    Young rifts are shaped by combined tectonic and surface processes and climate, yet few records exist to evaluate the interplay of these processes over an extended period of early rift-basin development. Here, we present the longest and highest resolution record of sediment flux and paleoenvironmental changes when a young rift connects to the global oceans. New results from International Ocean Discovery Program (IODP) Expedition 381 in the Corinth Rift show 10s–100s of kyr cyclic variations in basin paleoenvironment as eustatic sea level fluctuated with respect to sills bounding this semi-isolated basin, and reveal substantial corresponding changes in the volume and character of sediment delivered into the rift. During interglacials, when the basin was marine, sedimentation rates were lower (excepting the Holocene), and bioturbation and organic carbon concentration higher. During glacials, the basin was isolated from the ocean, and sedimentation rates were higher (~2–7 times those in interglacials). We infer that reduced vegetation cover during glacials drove higher sediment flux from the rift flanks. These orbital-timescale changes in rate and type of basin infill will likely influence early rift sedimentary and faulting processes, potentially including syn-rift stratigraphy, sediment burial rates, and organic carbon flux and preservation on deep continental margins worldwide.publishedVersio

    Quantitative analysis of a footwall‐scarp degradation complex and syn‐rift stratigraphic architecture, Exmouth Plateau, NW Shelf, offshore Australia

    Get PDF
    Interactions between footwall‐, hangingwall‐ and axial‐derived depositional systems make syn‐rift stratigraphic architecture difficult to predict, and preservation of net‐erosional source landscapes is limited. Distinguishing between deposits derived from fault‐scarp degradation (consequent systems) and those derived from long‐lived catchments beyond the fault block crest (antecedent systems) is also challenging, but important for hydrocarbon reservoir prospecting. We undertake geometric and volumetric analysis of a fault‐scarp degradation complex and adjacent hangingwall‐fill associated with the Thebe‐2 fault block on the Exmouth Plateau, NW Shelf, offshore Australia, using high resolution 3D seismic data. Vertical and headward erosion of the complex and fault throw are measured. Seismic‐stratigraphic and seismic facies mapping allow us to constrain the spatial and architectural variability of depositional systems in the hangingwall. Footwall‐derived systems interacted with hangingwall‐ and axial‐derived systems, through diversion around topography, interfingering or successive onlap. We calculate the volume of footwall‐sourced hangingwall fans (VHW) for nine quadrants along the fault block, and compare this to the volume of material eroded from the immediately up‐dip fault‐scarp (VFW). This analysis highlights areas of sediment bypass (VFW > VHW) and areas fed by sediment sources beyond the degraded fault scarp (VHW > VFW). Exposure of the border fault footwall and adjacent fault terraces produced small catchments located beyond the fault block crest that fed the hangingwall basin. One source persisted throughout the main syn‐rift episode, and its location coincided with: (a) an intra‐basin topographic high; (b) a local fault throw minimum; (c) increased vertical and headward erosion within the fault‐scarp degradation complex; and (d) sustained clinoform development in the immediate hangingwall. Our novel quantitative volumetric approach to identify through‐going sediment input points could be applied to other rift basin‐fills. We highlight implications for hydrocarbon exploration and emphasize the need to incorporate interaction of multiple sediment sources and their resultant architecture in tectono‐stratigraphic models for rift basins

    Late Quaternary mud-dominated, basin-floor sedimentation of the Gulf of Corinth, Greece: Implications for deep-water depositional processes and controls on syn-rift sedimentation

    No full text
    Syn-rift deep-water muds and mudstones preserve a relatively complete stratigraphic record of tectonic and climatic events. This paper investigates mud-dominated deposits and stratigraphy using core from International Ocean Discovery Program (IODP) Expedition 381 sites M0078 and M0079 in the Gulf of Corinth, Greece. Millimetre-scale logging defined several bed types: homogeneous and laminated mud beds, bioturbated beds, a variety of graded beds, and rare matrix-supported conglomerates and slumps. Homogeneous muds and light grey to black laminated muds record deposition from distal, waning low density turbidity currents and terminal mud-rich quasi-laminar or laminar plug flows. Graded beds, interpreted as turbidites, range from beds several millimetre to a few centimetres of mud with silt to fine sand bases, to metre-scale mud beds with coarser sand and pebble bases. Conglomerate and slumped beds record cohesive debris flows, transitional flows and slope failure. Three stratal package types are distinguished: bioturbated, bedded and laminated, recording distinct hydrological conditions. Bioturbated packages record interglacial marine conditions with well oxygenated waters. Bedded packages record hemipelagic processes and low energy density underflows in a mainly dysoxic, stratified, lacustrine setting (glacial phases). In laminated packages, white mm-scale laminae of calcite or aragonite from varved, hemipelagic sediments demonstrating seasonal variability in a dysoxic non-marine or transitional setting. Rift stratigraphy is linked to eustatically controlled connections to the global ocean across rift segment boundaries. The ca. 780 to 330 ka succession is dominated by laminated packages with thin bioturbated packages and distinct conglomerates and slumps, suggesting high sills, making ocean connections brief and transitional to lacustrine conditions prolonged. The ca. 330 ka to present succession shows well developed bioturbated and bedded packages, separated by thin laminated packages, suggesting brief transitions and well-developed marine conditions due to lower sills. Results indicate that structurally controlled rift segment boundaries exert a first-order control on syn-rift stratigraphic evolution, with fault segment growth and linkage driving intra-rift facies and sequence variability

    Deep-Water Syn-rift Stratigraphy as Archives of Early-Mid PleistocenePalaeoenvironmental Signals and Controls on Sediment Delivery

    No full text
    The timing and character of coarse siliciclastic sediment delivered to deep-water environments in active rift basins is governed by the complicated interactions of tectonics, climate, eustasy, hinterland geology, and shelf process regime. The stratigraphic archives of deep-water syn-rift basin-fills provide records of palaeoenvironmental changes (e.g. climate and vegetation) in onshore catchments, particularly where they are connected by narrow shelves. However, a chronostratigraphically constrained record of climatic fluctuations and process responses in the hinterland source area recorded in deep-water deposits is rare. Here, we integrate a fully cored research borehole with outcrop exposures of deep-water syn-rift stratigraphy to reconstruct palaeoenvironmental change within the stratigraphy of the West Xylokastro Fault Block in the Corinth Rift, Greece. We used palaeomagnetic and palynological analyses from borehole core samples to develop a chronostratigraphic and palaeoenvironmental model, which we compare to global records of Early-Mid Pleistocene climate and eustatic change. This framework allows establishment of a chronostratigraphic and palaeoenvironmental context to stratigraphic variability encountered in outcrop and in the borehole. Our results show that the similar to 240 m thick studied succession was deposited from similar to 1.1 to 0.6 Ma across the Early-to Mid-Pleistocene transition. During the Early Pleistocene, obliquity-paced climatic variability is largely coherent with vegetation changes of forest coverage within catchments on the southern margin of the Corinth Rift. Large magnitude, eccentricity-paced cyclicity dominant after the Mid-Pleistocene Transition can alter sediment supply from onshore catchments during the warming stages of severe interglacials where expansion of forest cover may trap sediment within catchments. Conglomeratic grade sediment delivery to the deep-water is enhanced during glacial periods, interpreted to reflect sparse forest cover and large winter storms, and during semi-arid, grassland-dominated interglacial highstands during severe interglacials. Base-level rise during minor interglacials is easily outpaced by high sediment supply and is seldom represented stratigraphically. The study demonstrates the value of integrated palynological and sedimentological studies, whilst applying a conservative approach to interpretation when dealing with sparse palynological records from proximal deep-water stratigraphy. The case study provides conceptual models where climatic and vegetation changes can begin to be incorporated as a key control on sediment flux from onshore drainage basins to deep-water syn-rift successions

    Deep-Water Syn-rift Stratigraphy as Archives of Early-Mid Pleistocene Palaeoenvironmental Signals and Controls on Sediment Delivery

    Get PDF
    The timing and character of coarse siliciclastic sediment delivered to deep-water environments in active rift basins is governed by the complicated interactions of tectonics, climate, eustasy, hinterland geology, and shelf process regime. The stratigraphic archives of deep-water syn-rift basin-fills provide records of palaeoenvironmental changes (e.g. climate and vegetation) in onshore catchments, particularly where they are connected by narrow shelves. However, a chronostratigraphically constrained record of climatic fluctuations and process responses in the hinterland source area recorded in deep-water deposits is rare. Here, we integrate a fully cored research borehole with outcrop exposures of deep-water syn-rift stratigraphy to reconstruct palaeoenvironmental change within the stratigraphy of the West Xylokastro Fault Block in the Corinth Rift, Greece. We used palaeomagnetic and palynological analyses from borehole core samples to develop a chronostratigraphic and palaeoenvironmental model, which we compare to global records of Early-Mid Pleistocene climate and eustatic change. This framework allows establishment of a chronostratigraphic and palaeoenvironmental context to stratigraphic variability encountered in outcrop and in the borehole. Our results show that the ∼240 m thick studied succession was deposited from ∼1.1 to 0.6 Ma across the Early-to Mid-Pleistocene transition. During the Early Pleistocene, obliquity-paced climatic variability is largely coherent with vegetation changes of forest coverage within catchments on the southern margin of the Corinth Rift. Large magnitude, eccentricity-paced cyclicity dominant after the Mid-Pleistocene Transition can alter sediment supply from onshore catchments during the warming stages of severe interglacials where expansion of forest cover may trap sediment within catchments. Conglomeratic grade sediment delivery to the deep-water is enhanced during glacial periods, interpreted to reflect sparse forest cover and large winter storms, and during semi-arid, grassland-dominated interglacial highstands during severe interglacials. Base-level rise during minor interglacials is easily outpaced by high sediment supply and is seldom represented stratigraphically. The study demonstrates the value of integrated palynological and sedimentological studies, whilst applying a conservative approach to interpretation when dealing with sparse palynological records from proximal deep-water stratigraphy. The case study provides conceptual models where climatic and vegetation changes can begin to be incorporated as a key control on sediment flux from onshore drainage basins to deep-water syn-rift successions

    Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the Field

    Get PDF
    Bacillus thuringiensis (Bt) and its insecticidal toxins are widely exploited in microbial biopesticides and genetically modified crops. Its population biology is, however, poorly understood. Important issues for the safe, sustainable exploitation of Bt include understanding how selection maintains expression of insecticidal toxins in nature, whether entomopathogenic Bt is ecologically distinct from related human pathogens in the Bacillus cereus group, and how the use of microbial pesticides alters natural bacterial populations. We addressed these questions with a MLST scheme applied to a field experiment in which we excluded/added insect hosts and microbial pesticides in a factorial design. The presence of insects increased the density of Bt/B. cereus in the soil and the proportion of strains expressing insecticidal toxins. We found a near-epidemic population structure dominated by a single entomopathogenic genotype (ST8) in sprayed and unsprayed enclosures. Biopesticidal ST8 proliferated in hosts after spraying but was also found naturally associated with leaves more than any other genotype. In an independent experiment several ST8 isolates proved better than a range of non-pathogenic STs at endophytic and epiphytic colonization of seedlings from soil. This is the first experimental demonstration of Bt behaving as a specialized insect pathogen in the field. These data provide a basis for understanding both Bt ecology and the influence of anthropogenic factors on Bt populations. This natural population of Bt showed habitat associations and a population structure that differed markedly from previous MLST studies of less ecologically coherent B. cereus sample collections. The host-specific adaptations of ST8, its close association with its toxin plasmid and its high prevalence within its clade are analogous to the biology of Bacillus anthracis. This prevalence also suggests that selection for resistance to the insecticidal toxins of ST8 will have been stronger than for other toxin classes

    Cultural Identity, Religion, and Globalization in Latin America. Our Lady of Guadalupe and Saint Martin de Porres as Clear Examples of Interculturalism and Instruments of Mediation among Different Weltanschauungen

    No full text
    Latin America is a part of that Global village where—according to Marc Augé—places, time, and space exist in abundance and where the presumed unique nature of the Western model clashes with the image of the “other”. (Augé (2009); Salgues (2016), p. 114) Thus, while the formation of a multiethnic and multicultural society—one based on the principle of tolerance, in which diversity and homologation should coexist without conflict—is hoped for, the spread of such categories as ethnicity and minority underscores the dissimilarities of our time. Starting from such basic concepts as, for example, religion, culture, otherness, and identity, and with the analysis of two case studies—Our Lady of Guadalupe and Saint Martín de Porres—the aim is to raise a problem: does a Latin American cultural identity exist? And how can it be identified
    corecore