103 research outputs found

    A single amino acid substitution in the novel H7N9 influenza A virus NS1 protein increases CPSF30 binding and virulence

    Get PDF
    Although an effective interferon antagonist in human and avian cells, the novel H7N9 influenza virus NS1 protein is defective at inhibiting CPSF30. An I106M substitution in H7N9 NS1 can restore CPSF30 binding together with the ability to block host gene expression. Furthermore, a recombinant virus expressing H7N9 NS1-I106M replicates to higher titers in vivo, and is subtly more virulent, than parental. Natural polymorphisms in H7N9 NS1 that enhance CPSF30 binding may be cause for concern

    Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling.

    Get PDF
    An estimated 50 million dengue virus (DENV) infections occur annually and more than forty percent of the human population is currently at risk of developing dengue fever (DF) or dengue hemorrhagic fever (DHF). Despite the prevalence and potential severity of DF and DHF, there are no approved vaccines or antiviral therapeutics available. An improved understanding of DENV immune evasion is pivotal for the rational development of anti-DENV therapeutics. Antagonism of type I interferon (IFN-I) signaling is a crucial mechanism of DENV immune evasion. DENV NS5 protein inhibits IFN-I signaling by mediating proteasome-dependent STAT2 degradation. Only proteolytically-processed NS5 can efficiently mediate STAT2 degradation, though both unprocessed and processed NS5 bind STAT2. Here we identify UBR4, a 600-kDa member of the N-recognin family, as an interacting partner of DENV NS5 that preferentially binds to processed NS5. Our results also demonstrate that DENV NS5 bridges STAT2 and UBR4. Furthermore, we show that UBR4 promotes DENV-mediated STAT2 degradation, and most importantly, that UBR4 is necessary for efficient viral replication in IFN-I competent cells. Our data underscore the importance of NS5-mediated STAT2 degradation in DENV replication and identify UBR4 as a host protein that is specifically exploited by DENV to inhibit IFN-I signaling via STAT2 degradation

    Macrophages and myeloid dendritic cells, but not plasmacytoid dendritic cells, produce IL-10 in response to MyD88- and TRIF-dependent TLR signals, and TLR-independent signals

    Get PDF
    We have previously reported that mouse plasmacytoid dendritic cells (DC) produce high levels of IL-12p70, whereas bone marrow-derived myeloid DC and splenic DC produce substantially lower levels of this cytokine when activated with the TLR-9 ligand CpG. We now show that in response to CpG stimulation, high levels of IL-10 are secreted by macrophages, intermediate levels by myeloid DC, but no detectable IL-10 is secreted by plasmacytoid DC. MyD88-dependent TLR signals (TLR4, 7, 9 ligation), Toll/IL-1 receptor domain-containing adaptor-dependent TLR signals (TLR3, 4 ligation) as well as non-TLR signals (CD40 ligation) induced macrophages and myeloid DC to produce IL-10 in addition to proinflammatory cytokines. IL-12p70 expression in response to CpG was suppressed by endogenous IL-10 in macrophages, in myeloid DC, and to an even greater extent in splenic CD8alpha(-) and CD8alpha(+) DC. Although plasmacytoid DC did not produce IL-10 upon stimulation, addition of this cytokine exogenously suppressed their production of IL-12, TNF, and IFN-alpha, showing trans but not autocrine regulation of these cytokines by IL-10 in plasmacytoid DC

    TPL-2 negatively regulates interferon-β production in macrophages and myeloid dendritic cells

    Get PDF
    Stimulation of Toll-like receptors (TLRs) on macrophages and dendritic cells (DCs) by pathogen-derived products induces the production of cytokines, which play an important role in immune responses. Here, we investigated the role of the TPL-2 signaling pathway in TLR induction of interferon-β (IFN-β) and interleukin-10 (IL-10) in these cell types. It has previously been suggested that IFN-β and IL-10 are coordinately regulated after TLR stimulation. However, in the absence of TPL-2 signaling, lipopolysaccharide (TLR4) and CpG (TLR9) stimulation resulted in increased production of IFN-β while decreasing IL-10 production by both macrophages and myeloid DCs. In contrast, CpG induction of both IFN-α and IFN-β by plasmacytoid DCs was decreased in the absence of TPL-2, although extracellular signal-regulated kinase (ERK) activation was blocked. Extracellular signal-related kinase–dependent negative regulation of IFN-β in macrophages was IL-10–independent, required protein synthesis, and was recapitulated in TPL-2–deficient myeloid DCs by retroviral transduction of the ERK-dependent transcription factor c-fos

    HERC6 is the main E3 ligase for global ISG15 conjugation in mouse cells

    Get PDF
    Type I interferon (IFN) stimulates expression and conjugation of the ubiquitin-like modifier IFN-stimulated gene 15 (ISG15), thereby restricting replication of a wide variety of viruses. Conjugation of ISG15 is critical for its antiviral activity in mice. HECT domain and RCC1-like domain containing protein 5 (HerC5) mediates global ISGylation in human cells, whereas its closest relative, HerC6, does not. So far, the requirement of HerC5 for ISG15-mediated antiviral activity has remained unclear. One of the main obstacles to address this issue has been that no HerC5 homologue exists in mice, hampering the generation of a good knock-out model. However, mice do express a homologue of HerC6 that, in contrast to human HerC6, can mediate ISGylation. Here we report that the mouse HerC6 N-terminal RCC1-like domain (RLD) allows ISG15 conjugation when replacing the corresponding domain in the human HerC6 homologue. In addition, sequences in the C-terminal HECT domain of mouse HerC6 also appear to facilitate efficient ISGylation. Mouse HerC6 paralleled human HerC5 in localization and IFN-inducibility. Moreover, HerC6 knock-down in mouse cells abolished global ISGylation, whereas its over expression enhanced the IFNβ promoter and conferred antiviral activity against vesicular stomatitis virus and Newcastle disease virus. Together these data indicate that HerC6 is likely the functional counterpart of human HerC5 in mouse cells, suggesting that HerC6-/-mice may provide a feasible model to study the role of human HerC5 in antiviral responses

    NFAT5 Regulates HIV-1 in Primary Monocytes via a Highly Conserved Long Terminal Repeat Site

    Get PDF
    To replicate, HIV-1 capitalizes on endogenous cellular activation pathways resulting in recruitment of key host transcription factors to its viral enhancer. RNA interference has been a powerful tool for blocking key checkpoints in HIV-1 entry into cells. Here we apply RNA interference to HIV-1 transcription in primary macrophages, a major reservoir of the virus, and specifically target the transcription factor NFAT5 (nuclear factor of activated T cells 5), which is the most evolutionarily divergent NFAT protein. By molecularly cloning and sequencing isolates from multiple viral subtypes, and performing DNase I footprinting, electrophoretic mobility shift, and promoter mutagenesis transfection assays, we demonstrate that NFAT5 functionally interacts with a specific enhancer binding site conserved in HIV-1, HIV-2, and multiple simian immunodeficiency viruses. Using small interfering RNA to ablate expression of endogenous NFAT5 protein, we show that the replication of three major HIV-1 viral subtypes (B, C, and E) is dependent upon NFAT5 in human primary differentiated macrophages. Our results define a novel host factor–viral enhancer interaction that reveals a new regulatory role for NFAT5 and defines a functional DNA motif conserved across HIV-1 subtypes and representative simian immunodeficiency viruses. Inhibition of the NFAT5–LTR interaction may thus present a novel therapeutic target to suppress HIV-1 replication and progression of AIDS

    Unanchored K48-Linked Polyubiquitin Synthesized by the E3-Ubiquitin Ligase TRIM6 Stimulates the Interferon-IKKε Kinase-Mediated Antiviral Response.

    Get PDF
    Type I interferons (IFN-I) are essential antiviral cytokines produced upon microbial infection. IFN-I elicits this activity through the upregulation of hundreds of IFN-I-stimulated genes (ISGs). The full breadth of ISG induction demands activation of a number of cellular factors including the IκB kinase epsilon (IKKε). However, the mechanism of IKKε activation upon IFN receptor signaling has remained elusive. Here we show that TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family of proteins, interacted with IKKε and promoted induction of IKKε-dependent ISGs. TRIM6 and the E2-ubiquitin conjugase UbE2K cooperated in the synthesis of unanchored K48-linked polyubiquitin chains, which activated IKKε for subsequent STAT1 phosphorylation. Our work attributes a previously unrecognized activating role of K48-linked unanchored polyubiquitin chains in kinase activation and identifies the UbE2K-TRIM6-ubiquitin axis as critical for IFN signaling and antiviral response
    corecore