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Abstract

The tripartite motif (TRIM) proteins are important in a variety of cellular 

functions including antiviral activity. We systematically analyzed mRNA expression 

of representative TRIMs in primary mouse macrophages, myeloid and plasmacytoid 

dendritic cells, and a selection of CD4+ T cell subsets. These cells have different 

effector functions in innate and adaptive immune responses, to a large extent due to 

the different patterns of cytokines that they produce. Here, we defined four clusters of 

TRIM genes based on their selective expression in these cell subsets. The first group 

of TRIMs was preferentially expressed in CD4+T cells and contained the COS-FN3 

motif. Additional TRIMs were identified that showed up-regulation in macrophages 

and dendritic cells upon influenza virus infection in a type-I IFN dependent manner 

suggesting that they may play a role in anti-viral responses. However, stimulation of 

macrophages and mDC with LPS and double stranded RNA also led to type-I IFN 

dependent up-regulation of these TRIM genes, suggesting that their expression is not 

directly regulated by the virus, and that they may have broader functions in innate 

immune responses. In support of the proposed role of TRIMs in anti-viral responses, 

a subset of the type-I IFN dependent TRIMs mapped to mouse chromosome 7, 

syntenic to human chromosome 11 where TRIMs such as TRIM5, shown to have 

anti-viral activity, are localized. Consistent with these findings, up-regulation of the 

same TRIM genes in human macrophages was mainly observed under conditions 

which resulted in the induction of IFNp (in this case by LPS and IFNy stimulations), 

as observed by reanalysis of a previously published microarray study. Within the 

group of TRIMs induced by viruses in macrophages and dendritic cells via a type-I 

IFN dependent mechanism we distinguish two clusters on the basis of TRIM 

expression in CD4+ T cells. A fourth group of TRIMs was constitutively expressed in
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plasmacytoid dendritic cells independently of viral infection or signalling through the 

type-I IFN receptor. Our findings on expression and regulation of TRIMs may help to 

develop potential strategies for determining functions of this diverse family of 

molecules in immune cells.
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Chapter 1: 

Introduction



1.1. Perspective

During the evolution of multicellular organisms, defence against microbial 

infections has been a universal requirement for adaptation. In this process of co­

evolution between host and invader organism, a complex relationship has evolved in 

which both organisms compete for survival. From the point of view of the host 

organism, many gene products and entire pathways involved in host defence appear 

to be of ancient origin and are found in organisms evolutionarily distant, from 

humans to insects, and even in plants. Many of the proteins involved in these 

pathways remain highly homologous, indicating the essential role that these proteins 

play in response to pathogens and suggesting similar functions during evolution.

An ancient family of proteins that has been suggested to be a component of 

the innate immune response is the family of Tripartite motif (TRIM) containing 

proteins which can be found in all metazoans, from nematodes and invertebrate 

organisms, such as flies and worms, to primates. The large number of TRIM genes in 

higher eukaryotes suggests a rapid evolution of this family by gene duplications. This 

family of proteins is characterized by the conserved molecular structure of the 

tripartite motif. The striking conserved pattern, combination, and order of the 

domains, strongly suggests that this minimal structure was selectively maintained to 

carry out a specialized basic function common to all tripartite motif proteins. While 

the basic domain structure has been maintained, the sequences in the C-terminal 

region have rapidly evolved to acquire novel specificity and assume new 

physiological functions. TRIM proteins have been suggested to be involved in a wide 

range of molecular functions, from transcriptional regulation to post-translational 

modifications that may result in different cellular functions from apoptosis to cell 

differentiation, development, oncogenesis, signalling and immune responses. Since



the discovery of TRIM5a as a restriction factor to HIV-1 infection, there has been 

increasing interest in studying TRIMs as a family of molecules with anti-viral 

function. Moreover, the fact that many TRIMs have also been shown to be involved 

in immune response mechanisms like signal transduction pathways leading to 

production of cytokines, suggests that TRIMs may be an important component of the 

immune response in general, not only against viruses. The search for a common 

function in all TRIM proteins has been the focus of intense research, but much of this 

has been limited to the use of cell lines and over-expression assays which can lead to 

inaccurate or misleading interpretations and conclusions. Also, most of the studies on 

TRIMs as anti-viral effectors have been focused on their possible molecular 

mechanism of direct interaction with viruses; however, recent evidence suggests that 

TRIMs may act indirectly against viruses by playing important roles in the signalling 

cascades that lead to production of cytokines known to play a role in anti-viral 

responses. For this aspect it is important to consider the physiological conditions 

under which these molecules may be expressed and therefore primary cells are 

needed for these studies. We have used a systematic approach to determine the 

expression of representative TRIMs in a broad number of primary immune cells that 

produce different cytokines upon stimulation in an attempt to understand firstly, how 

expression of TRIM molecules is regulated and secondly, to obtain potential leads as 

to their function. The search for common patterns of gene expression that may help 

to predict the function of a large number of proteins, the TRIM family, will be the 

focus of this thesis.
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1.2. Structure of TRIM proteins: The Tripartite motif (TRIM)

The tripartite motif (TRIM) or RBCC protein family was originally described 

as a group of proteins that contain a RING finger (R), one or two B- boxes (Bl, B2) 

and a coiled-coil domain (CC) (Figure 1.1 A) [1-4]. The N-terminal domain of almost 

all TRIM proteins consists of the RING finger domain which is composed of 40-60 

amino acids that bind two zinc atoms in a unique cross-braced metal ligation scheme. 

This domain has a consensus sequence of a Cys-X2-Cys-X(9_39)-Cys-X(i_3)-His-X(2-3)- 

Cys/His-X2 -Cys-X(4^ 8)-Cys-X2-Cys where X can be any amino acid, although there 

are clear preferences for particular residues at certain positions (Figure 1.1B)[3, 5]. 

The RING finger domain is probably the most extensively studied, and there are 

mainly two different functions assigned to it. Some studies have shown this domain 

to be involved in protein-protein interactions [6, 7] while others have shown that 

some TRIMs mediate E3 ubiquitin ligase activity by interacting with and promoting 

E2-dependent ubiquitin conjugation [6, 8]. An increasing number of TRIMs are 

being found to mediate protein ubiquitination and therefore it has been suggested that 

TRIM proteins may represent a novel subclass of E3-ubiquitin ligases [8]. This is 

highlighted by the fact that recent findings [9] have shown protein ubiquitination to 

be important not only as a mechanism for proteasome mediated protein degradation, 

but also as part of non-proteolytic pathways including cytokine induced signalling or 

signal transduction pathways resulting in cytokine production [10](e.g. activation of 

IKK depends on ubiquitination of TRAF6 by a non-proteolytic mechanism [11]; 

activation of RIG-I depends on its degradation-independent ubiquitination by 

TRIM25 [12].

Following the RING domain is the B-box domain, which exists in two 

different forms; Bl and B2. These domains consist of different types of cysteine-



histidine zinc-binding motifs of about 40 amino acids and share a similar pattern of 

cysteine and histidine residues (shown in Figure 1.1B) [8, 13]. The B-boxes are 

found exclusively in TRIM proteins and are an important determinant of the family, 

but no specific function has yet been attributed to these domains. It has been 

suggested that since the overall architecture of the RBCC/TRIM motif is highly 

conserved, the three dimensional structure of the motif may be important for protein- 

protein interactions [14, 15]. The best evidence so far are the molecular structures of 

the Bl and B2 domains of TRIM 18/MID 1, which have been recently solved [16, 17]. 

The molecular structure of the B-box 1 was found to share some conserved structural 

features with the RING domain, suggesting that the B-box 1 might also possess E3 

ubiquitin ligase activity [17]. Moreover, the structure of the B-box2 adopts a RING- 

like structure and can also bind two zinc atoms with the same cross-braced pattern 

observed for the B-box 1 and RING domains suggesting that B-box 1 and B-box2 are 

indeed similar and may have evolved from a common ancestor with the RING 

domain [16]. Further evidence for the possible role of the B-box domain in protein- 

protein interactions is that the B-box 1 domain of TRIM18/MID 1 was found to 

interact specifically with the alpha 4, the catalytic subunit of the protein phosphatase 

2A (PP2Ac). This complex is required for the targeting of PP2Ac for proteasome- 

mediated degradation [18]. In addition, mutational deletion studies of the B-box of 

one of the TRIM members, the TRIM27/RFP protein, have shown it to be important 

for facilitating the formation of homodimers through the coiled-coil region, and 

mutations of the B-box affect the sub-cellular compartmentalization of TRIM27 in 

various cell lines [19].

The third characteristic motif of the TRIM proteins is the coiled-coil (CC) 

domain, a region predicted by bioinformatics to be a typical hyper-helical structure.



This region is formed by multiple a-helices and invariably follows the B-box2 in the 

entire set of TRIM proteins [20-22]. This CC motif has been shown to be necessary 

and sufficient for homo-dimerization in a large number of TRIM proteins (TRIM1, 3, 

5, 6, 8, 9, 10, 11, 18, 21, 23, 24, 25, 26, 27, 29, 31, 32) [19, 20, 23]. On the other 

hand, only a few of them can form heterologous complexes using this domain 

(TRIM 1/TRIM 18; 19/27; 23/29; 23/31)[20]. Furthermore, mutation and deletion 

experiments revealed that the CC domain is responsible for promoting homo­

oligomerization and therefore formation of distinct sub-cellular structures that can 

identify cellular compartments [20].

1.3. The C-Terminal region of TRIMs

An interesting aspect of the TRIM proteins is that the common RBCC feature 

is followed by one or more specific C-terminal domains that can determine, at least 

in part, the function of the protein by recruiting unique partners. Some of these 

domains include NHL (defined by sequence homologies with Ncl-1, HT2A, Lin41 

proteins), ARF/SAR (found in the ADP ribosylation factor and Secretion associated 

and Ras related proteins), WD40 (repeats to form p-propeller structures), Fibronectin 

III (FN3), B30.2, plant homeodomain (PHD), Filamin, Bromodomain (BROMO), 

meprin and TRAF homology domain (MATH), and the recently described COS 

domain [22]. Figure 1.2 shows a schematic representation of the TRIM family 

members sub-grouped based on their C-terminal domain composition. The B30.2 

domain is the most common since it is present in 40 of the 66 human TRIMs and it is 

believed to be involved in protein-protein interactions and/or RNA binding [22]. This 

domain is of special interest since it has been implicated in the virus restriction 

specificity of certain TRIMs [22, 24].
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1.3.1. The B30.2 domain

The B30.2 domain was originally identified as a protein domain encoded by a 

single exon within some genes in the major histocompatibility complex (MHC) 

region of human chromosome 6p21.3 [25]. This domain is composed of about 200 

amino acids and comprises a combination of a PRY motif followed by a SPRY motif 

(Figure 1.3A) [26]. The SPRY and B30.2 domains can be found not only in TRIM 

proteins but also in 10 additional protein families encoded in the human genome 

including the immunoglobulin super-family and negative regulators of the 

JAK/STAT pathway (SOCS-box SSB). These domains cover a wide range of 

functions, including regulation of cytokine signalling (SOCS), RNA metabolism, 

intracellular calcium release, immunity to retroviruses, as well as regulatory and 

developmental processes (Figure 1.3B) [26]. This evolutionary adaptation, from 

SPRY to B30.2 and subsequent expansion of the number of genes with this domain, 

mimics that of some immune receptors, after the emergence of the adaptive immune 

system [27], and has led some to suggest that the B30.2 domain may have been 

selected as a component of immune defence [26]. Experimental evidence is 

consistent with a broad role for the B30.2 domain in innate immune recognition of 

retroviruses since B30.2 mutagenesis studies, as well as sequence analysis of 

TRIM5a from related primates, suggested that the differences in anti-viral activities 

are defined by patches in the B30.2 domain [28]. This is also supported by the fact 

that a single amino acid substitution (R332P) in the B30.2 domain of the human 

TRIM5a can confer the ability to restrict HIV-1 (Figure 1.3C)[24], suggesting that 

small changes during evolution may have extreme effects on our susceptibility to 

cross-species infection. However, it is also important to consider that there is 

evidence suggesting that the B30.2 domain is important for other cellular functions



besides anti-viral functions. Examples of this are the mutations in the B30.2 domains 

of TRIM 18/MID 1 associated with Optiz syndrome [29], and of TRIM20/MEFV, 

associated with Familial Mediterranean fever [30](Figure 1.3C). Moreover, the fact 

that the B30.2 domain may be involved in protein-protein interactions that can lead to 

activation of signal transduction pathways, but on the other hand can also function as 

a docking site for pathogen products make B30.2 containing proteins very versatile in 

their functions.

1.3.2. TRIM transcript variants and isoforms

An important and challenging aspect which may have relevance to the 

function of TRIMs is the fact that many of the family members produce alternatively 

spliced transcripts that result in isoforms. The isoforms of a single TRIM protein, 

generated by alternative splicing, usually share the same RBCC motif but differ in 

their C terminus, potentially allowing them to recruit different sets of proteins. An 

example is the human TRIM19/PML protein which has numerous transcript variants 

leading to 7 different isoforms detected in cells [31]. The RBCC motifs of TRIM19 

mediate nuclear body formation and thus are essential for its growth suppressing, 

apoptotic and anti-viral activities, but particular TRIM19/PML isoforms can mediate 

specific interactions with other proteins, potentially giving diverse functions [15]. 

Another example of the functional difference of TRIM isoforms is the case of the 

anti-viral activity of TRIM5a. This protein is the product of the TRIM5 gene which 

has a total of 5 isoforms. TRIM5a is the only isoform that contains the B30.2 domain 

required for viral restriction [24, 32]. It is also important to note that the TRIM5y and 

TRIM56 isoforms, which lack the B30.2 domain, can act as dominant negatives to 

TRIM5a by formation of non-functional dimers [33, 34]. To understand the potential
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role of the TRIM proteins it is necessary to identify all the possible isoforms and the 

conditions under which each one of them is expressed.

1.4. TRIM Function

As mentioned above, TRIMs have been reported to be involved in multiple 

functions, from transcriptional regulation to post-translational modifications, 

signalling, cell differentiation, cancer, apoptosis, neuronal function and anti-viral 

functions [5, 8, 15, 22]. There is increasing evidence that many of these cellular 

functions may be related to their potential role as E3 ubiquitin ligases. However, in 

many cases their mechanism of action is still poorly defined. Many TRIMs have been 

proposed to have important functions but only due to correlations or associations 

with certain diseases. Nevertheless this information may be useful in pointing at 

possible functions of TRIMs that should be further explored. Some of these functions 

are outlined below.

1.4.1. Ubiquitin ligases

Ubiquitination is a post-translational modification thought to be used mainly 

to control protein levels by targeting proteins to the proteasome for degradation. This 

process involves at least three classes of enzymes. The El ubiquitin-activating 

enzyme binds ubiquitin to form an intermediate that then transfers the activated 

ubiquitin to the cysteine of an E2 ubiquitin enzyme. An E3 ubiquitin enzyme 

interacts directly with the E2 and the substrate protein and transfers ubiquitin to a 

lysine residue of the target protein [35]. In the case of TRIM proteins, a model has 

been suggested (shown in Figure 1.4A) where the RING domain binds to the 

ubiquitin-conjugating enzyme (E2) while the B-box/coiled-coil region forms the



pocket to recruit the substrate (S) [8]. The ubiquitin is then transferred from the E2 to 

the substrate (Figure 1.4A) [8]. The modified target is then directed towards 

proteasome-mediated degradation or other non-proteolytic pathways. Interestingly, 

recent studies have shown that protein ubiquitination is important not only for protein 

degradation [9] but also for regulation of protein activity, sub-cellular localization, 

control of gene transcription [36] or signal transduction pathways (e.g. TRIM25)[12]. 

Taken together, these results suggest a mechanism by which TRIM family members 

may exert their wide variety of cellular functions (summarized in Figure 1.4B) [8].

1.4.2. Cellular localization and compartmentalization

Some TRIMs have been previously characterized in terms of their sub- 

cellular localization and their capacity to form or associate with specific 

compartments, such as nuclear bodies (TRIM 19, TRIM24 and TRIM27) or 

microtubules (TRIM1, 9, 18, 36, 42, 46, and 67). In an extensive study of TRIM 

cellular localization, Reymond et al. [20] investigated the sub-cellular localization of 

a large number of TRIM proteins in living cells using green fluorescent protein 

(GFP) technology and found discrete cytoplasmic or nuclear structures. The TRIMs 

found in the cytoplasm were either associated with filaments or concentrated in the 

form of cytoplasmic bodies, occasionally located around the nucleus. Nuclear TRIM 

proteins (TRIM8, 19, 30 and 32) localized mostly to structures called nuclear bodies 

(NB) where TRIM 19 is the main component. The members of the bromodomain- 

containing subfamily (TRIM24, 28, and 33) were found associated with specific 

chromatin regions, consistent with the proposed role of this domain in transcriptional 

regulation [37]. Although this study gives a good insight on possible localization 

patterns of TRIMs and therefore may pinpoint putative cellular functions, however, it



has to be carefully interpreted since the use of GFP-TRIM fusion proteins and over­

expression assays can result in formation of protein aggregates or non-specific 

binding that could lead to misinterpretations. Based on the TRIM localization 

patterns observed, the authors concluded that many TRIM proteins define novel sub- 

cellular compartments and suggested that the TRIM motif may be responsible for the 

“compartmentalization” of other proteins thus revealing a novel cellular function 

[20]. Interestingly, a different study identified a sub-group of TRIMs that share an 

identical domain arrangement (RBCC-COS-FN3-B30.2 domains; TRIM1, 9, 18, 36, 

42, 46, 67) and co-localize to the microtubules. Binding to the microtubules is 

mediated by the COS domain, suggesting basic functional similarities for TRIMs 

sharing this same domain organization [38]. Therefore cellular localization and 

protein homology may help to predict possible cellular functions.

1.4.3. Transcriptional activities

Many TRIMs have been found to be located in the nucleus and some 

overexpression and gene reporter studies have shown TRIMs to affect transcription 

of specific genes or interact with known transcription factors suggesting that TRIMs 

may affect transcription either directly or indirectly. It is important to note that 

TRIMs involved in transcription can also be classified as functionally important in 

signalling pathways since many of these TRIMs interact with signalling adaptor 

molecules or are targets of post-translational modifications important during 

signalling. Although not fully characterized, TRIM 14/PUB, TRIM27/RFP, and 

TRIM45 have been suggested to play repressive roles in transcriptional regulation. 

Overexpression of TRIM45 in COS-7 cell lines has been shown to inhibit the 

transcriptional activities of E1K-1 and AP-1, suggesting that TRIM45 may act as a



transcriptional repressor in mitogen-activated protein kinase (MAPK) signalling 

pathways [39]. Using a luciferase-based assay it was shown that TRIM14/PUB 

inhibits the transcriptional activity of PU.l [40], a member of the Ets family of 

transcription factors, and plays critical roles in the development of haematopoietic 

cells such as macrophages and B cells [41, 42]. In keeping with this, TRIM 14 is 

predominantly expressed in haematopoietic tissues, specifically in cells where PU.l 

is also expressed [40]. On the other hand, TRIM27/RFP’s repressive role on 

transcription has been associated with cancer when the TRIM motif is fused with the 

tyrosine kinase domain of the RET protein by chromosomal translocation [43]. 

TRIM27 was suggested to repress transcription by forming a more potent 

transcriptional repressor complex with methyl-CpG binding domain proteins (MBD 

proteins) which are involved in histone deacetylase-dependent transcriptional 

repression [44]. The role of TRIM19/PML, and the bromodomain containing TRIMs 

(TRIM24 and TRIM28) in transcription has been more extensively characterized.

1.4.3.1 TRIM19/PML as a regulator of transcription

Nuclear bodies (NB) are highly organized nuclear structures that are present 

in most mammalian cell nuclei and have been shown to be sites of transcriptional 

regulation. These structures lie near highly acetylated chromatin and many 

transcription factors and transcriptional regulators co-localize with TRIM19/PML in 

the NB [45]. One possible mechanism by which the NB and particularly TRIM 19 

regulates transcription is by participating in chromatin remodelling. One example is 

the case of the major histocompatibility complex (MHC) locus, where PML regulates 

transcription by interacting with special AT-rich sequence binding protein 1 

(SATB1) to organize the MHC class I locus into distinct higher-order chromatin-loop
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structures that can have positive or negative transcriptional activity [46]. However, 

TRIM19/PML has also been associated with transcriptional repression since PML- 

NB co-localizes with transcriptional co-repressors and heterochromatin-bound 

proteins such as HP1 (for heterochromatin protein-1) [45, 47]. Moreover TRIM 19 

can bind transcription factors and inhibit their transcriptional activity, for example, it 

has been suggested to act as a negative regulation of IFNy signalling by binding to 

the transcription factor STAT1 [48].

1.4.3.2 The bromodomain containing TRIMs: TRIM24,28,33, 66

TRIM24, 28 and 33 belong to a subfamily of TRIM proteins that contain a 

bromo-domain in the C-terminal region of the protein. The bromodomain can 

recognize acetyl-lysines on histones and can serve as a pivotal mechanism for 

regulating protein-protein interactions in numerous cellular processes including 

chromatin remodelling and transcriptional activation [49, 50]. Accordingly, these 

TRIMs associate with chromatin regions in the nucleus [20], and have been shown to 

play positive and negative roles in transcriptional processes. TRIM24 (also called 

TIF-la), a nuclear protein kinase [51], can regulate transcriptional activity of some 

nuclear receptors including the retinoid receptors (RXRs and RARs), while bound to 

their ligands [52]. TRIM24 forms complexes with TRIM28 and certain Kruppel- 

associated box (KRAB) motif-containing zinc finger repressors to inhibit 

transcription by a mechanism involving histone deacetylation and chromatin 

remodelling [53]. Although TRIM33, a protein involved in erythroid differentiation, 

has also been shown to have some silencing activity of gene promoters, the 

mechanism seems to be independent of KRAB-motif containing repressors or the
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chromatin remodelling protein HP1 [54]. TRIM66 (also called TIF15), the last 

member of this subfamily of bromodomain containing TRIMs, has also been shown 

to have a deacetylase-dependent transcriptional repression activity [55]. This TRIM 

can form homodimers and can bind the HP1 indicating that it may function in a 

similar way to TRIM24 and TRIM28. However, it is different to the other TIF1 

members in that its expression is largely restricted to the testis [55]. Interestingly and 

of relevance to my study, there are known cases of these Bromodomain containing 

TRIMs involved in regulation of cytokine gene transcription [56, 57]. Although these 

bromodomain-containing TRIMs share common structural and functional features 

and all seem to have negative regulatory functions, to date only TRIM28/ KAP1 (also 

called transcriptional intermediary factor: TIF-lp) has been suggested to be a 

negative regulator of type-I IFN dependent transcription [56](discussed in more 

detail later). Additionally, TRIM28 can bind histone methyltransferases [58] which 

methylate histones to inhibit transcription, supporting its role as inhibitor of 

transcription. Interestingly, this negative role of TRIM28 on gene transcription has 

important implications in silencing of retroviral transcription. Replication of murine 

leukaemia virus (MLV) is restricted in embryonic carcinoma and embryonic stem 

cells where TRIM28 forms a complex with histone methyltransferases, histone 

deacetylase and HP1 family members to methylate histone HI and promote 

chromatin condensation [59, 60]. This report highlighted the importance of TRIMs as 

potential viral restriction factors using transcriptional mechanisms to inhibit viral 

replication.
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1.4.4. TRIMs associated with disease; Cancer and autoimmunity

Since the function of TRIMs is so diverse and in many cases non-redundant, 

it is not surprising to find that mutations in particular TRIM genes have been 

associated with a variety of diseases. One may hypothesize that TRIMs with 

important functions in cell cycle, apoptosis or cell differentiation may be involved in 

cancer and tumour suppressor activities, while TRIMs found to be important in signal 

transduction pathways or transcriptional regulation of genes related to the immune 

response may be linked to autoimmunity or susceptibility to viral infections. The 

importance of TRIM function in specific biochemical processes is highlighted by the 

fact that mutations, lack of expression, or inactivation of TRIM function has been 

associated with a variety of tumours and may lead to cancer. However, although 

many TRIMs have been associated with tumour formation, only a few of them have 

been extensively characterized. The following are some examples of TRIMs that 

have been shown or suggested to have some involvement in cancer.

I.4.4.I. TRIMs in disease: TRIM19//PML and tumour

suppression

The best example and probably most extensively studied TRIM implicated in 

cancer is the promyelocytic leukaemia protein (PML or TRIM 19) which was 

originally discovered in patients suffering from the haematopoietic malignancy, acute 

promyelocytic leukaemia (APL). This disease is associated with a reciprocal 

chromosomal translocation of human chromosomes 15 and 17 resulting in PML- 

retinoid acid receptor a  (RARa) fusion protein [61-63]. APL is characterized by a 

block in differentiation of promyelocytes. Unlike in normal cells where PML 

localizes to the nuclear bodies (NB), PML is dispersed in the nucleus and the



cytoplasm in APL cells [64, 65]. Studies using PML deficient mice have shown an 

impaired capacity for terminal maturation of their myeloid cells [66]. Some 

experiments on the role of PML in cell growth control have been carried out using 

cell lines derived from PML deficient mice and have revealed tumour suppressor and 

pro-apoptotic functions for PML [67]. Moreover, it has also been shown that PML is 

involved in p53-dependent apoptosis [68] and in the regulation of gene expression 

[45, 69]. However, PML deficient mice do not develop spontaneous tumours, 

indicating that inactivation of PML is not the only requirement for development of 

APL in mice. Like other TRIMs, TRJM19/PML is involved in other cellular 

functions in addition to the ones leading to APL. PML is an essential component of 

the nuclear bodies (NB) and PML-NBs have been implicated in the induction of 

cellular senescence, inhibition of proliferation, maintenance of genomic stability and 

antiviral responses [31]. Since the number of studies on PML in relation to immune 

regulation are very limited and mostly using cell lines or over-expression analysis, 

the dominant function of TRIM19/PML remains unclear.

I.4.4.2. TRIMs in disease: TRIM25/EFP and breast cancer

TRIM25/EFP was first described as a protein regulated by estrogen and 

suggested to be an estrogen-responsive transcriptional regulator [70]. Later it was 

implicated in promoting breast tumours because TRIM25/EFP is responsible for the 

ubiquitin-dependent proteolytic inactivation of 14-3-3sigma, a negative regulator of 

the cell cycle [71]. Reduction of 14-3-3sigma is common in breast cancer and its 

expression is induced by p53 after DNA damage [72]. TRIM25 is essential for 

estrogen-dependent cell proliferation and organ development since TRIM25/EFP 

deficient mice display underdeveloped uteri and reduced estrogen responsiveness



[71]. However, TRIM25 can promote a switch from estrogen-dependent to estrogen- 

independent proliferation of breast cancer cells suggesting that expression and 

activity of TRIM25 must be tightly regulated. Interestingly, as mentioned in previous 

sections, TRIM25 has also an important role in the innate immune system by 

participating in the signal transduction pathway to induce IFNp [12](discussed more 

below). This indicates the importance of having mechanisms of tight regulation of 

TRIM gene expression to maintain a balance between required effector TRIM protein 

functions and disease.

1.4.4.3. TRIMs in disease: TRIM24 and cancer

Another well-characterized TRIM associated with cancer is TRIM24 (or 

Tifla) which is also known to act as a transcriptional regulator and has been shown 

to interact with many proteins involved in chromatin structure [51, 53, 73, 74]. 

TRIM24, a ligand-dependent nuclear receptor, functions in mice as a liver-specific 

tumour suppressor. In TRIM24 deficient mice, hepatocytes fail to execute proper cell 

cycle withdrawal during the neonatal-to-adult transition and continue to cycle in 

adult livers, resulting in cellular alterations that progress toward metastatic hepato­

cellular carcinoma (HCC) [75]. Interestingly, TRIM24 has been shown to share 

similar activities with TRIM19/PML and can also form fusion genes implicated in 

cancer. The TRIM24 gene fuses to a truncated B-Raf gene in murine hepatocellular 

carcinoma [76], and with a truncated RET tyrosine kinase proto-oncogene in thyroid 

papillary carcinoma [77]. TRIM24 also maps to a region in human chromosome 

7q32-34 which is a region frequently lost in myeloid disorders [78-80].



I.4.4.4. TRIMs in disease: other TRIMs associated with cancer

Other TRIMs reported to be associated with cancer are TRIM8, 13, 27, 29, 

32, 35, 36. However, many of these TRIMs have been poorly characterized and some 

studies have only shown some correlation of expression with tumour formation. 

TRIM29 has been proposed to be a marker of lymph node metastasis in gastric 

cancer since some patients have shown TRIM29 expression in their lymph nodes 

[81]. Some other TRIMs map to chromosomal regions that are affected in tumours 

and therefore suggested to be tumour suppressor genes. For example, TRIM 13 maps 

to the chromosomal region 13ql4.3 where homozygous deletions are found in 

chronic lymphocytic leukaemia (CLL) and multiple myeloma (MM) [82]. TRIM35 

inhibits cell growth, clonogenicity, and tumourigenicity when its expression is 

enforced in HeLa cells. TRIM35 is located on chromosome 8p21, a region also 

implicated in numerous leukaemias and solid tumours [83]. Another example is 

TRIM36, which is located on chromosome 5q22.3, at a region with frequent DNA 

alterations in different types of tumours including urological cancers. Although no 

mutations were found in TRIM36 of patients with prostate cancer, its expression was 

increased in prostate tissues of these patients suggesting that this gene might be 

associated with prostate tumourigenesis [84].

There are further studies associating other TRIMs with cancer. For example, 

TRIM32 mRNA has been reported to be highly expressed in human head and neck 

squamous cell carcinoma [85]. The mechanism of TRIM32 as an oncogene has been 

suggested to be via an interaction with Abl-interactor 2 (Abi2), which is a known 

tumour suppressor and an inhibitor of cell migration. It has also been shown that 

overexpression of TRIM32 promotes degradation of Abi2, resulting in enhancement 

of cell growth, transforming activity, and cell motility, whereas a dominant-negative



mutant of TRIM32, lacking the RING domain, inhibited the degradation of Abi2, 

supporting the role of TRIM32 as an oncogene [86]. Another example is the 

TRIM8/GERP human gene which maps to chromosome 10q24.3, a region showing 

frequent deletions in glioblastomas [87]. In support of a role of TRIM8 in cancer, a 

transcriptional profiling study of patients with larynx squamous cell carcinoma 

(LSCC), which is the most frequent neoplasm of the head and neck region, found that 

TRIM8 expression negatively correlated with nodal metastatic progression and was 

absent from adenocarcinoma, large cell carcinoma, chondrosarcoma, epithelioid 

carcinoma, and glioblastoma [88]. Moreover, overexpression of TRIM8 in vitro, 

showed a reduction in cell colony formation units suggesting growth suppressor 

functions [88]. TRIM27/RFP, also associated with cancer, was originally identified 

as the N-terminal fusion partner with the RET tyrosine kinase proto-oncogene 

[89].TRIM27 is differentially expressed in testicular germ cell tumours [90] and is 

expressed in a wide range of other tumour types [91].

I.4.4.5. TRIMs in disease: TRIMs and autoimmunity

TRIM21 (also called Ro52), has been described as one of the main 

autoantigens in Sjogren syndrome (SS), a systemic inflammatory disease caused by 

the presence of autoantibodies that occur also in systemic lupus erythematosus (SLE) 

and rheumatoid arthritis [92]. In addition to being targeted by autoantibodies, 

TRIM21 forms trimers to bind IgG through its B30.2 domain [93]. Moreover, the 

crystal structure of TRIM21 bound to the Fc region of IgG revealed hot-spot residues 

in the B30.2 domain that are similar to the ones involved in the control of HIV or 

MLV restriction by TRIM5a, as well as mediating severe familial Mediterranean
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fever by TRIM20 [94]. Autoantibodies against TRIM21 are associated with 

congenital heart block in the fetuses of mothers with Sjogren syndrome during 

pregnancy, and patient-derived monoclonal antibodies against TRIM21 have been 

shown to induce accumulating intracellular calcium levels in neonatal 

cardiomyocytes [95]. The syndrome is histologically characterized by lymphocytic 

infiltration into an inflammatory lesion and is also likely to be associated with 

malignant transformation such as lymphomas [96]. Although the causes of these 

diseases remain unclear, it is worth noting that a link between these pathologies and 

deregulation of cytokine production may also explain the pro-inflammatory effects 

seen, since TRIM21 has been shown to positively regulate IL-12p40 and to 

negatively regulate IFNp production (discussed in more detail below) [97, 98]. 

Recently, TRIM59 (also called SS-56) was also described as a potential autoantigen 

in SS and SLE. Moreover, there was an increased correlation with the presence of 

antibodies against TRIM59 and the visceral complications in SLE [99].

Mutations on the B30.2 domain of TRIM20 (also known as pyrin) have been

associated with a recessive inherited systemic autoinflammatory disease called

Mediterranean Fever (MEFV), which is characterized by recurrent attacks of fever

and synovial, or cutaneous inflammation [30]. TRIM20 has been suggested to play a

role in the regulation of the systemic inflammatory response, since TRIM20 can

modulate caspase-1 and IL-lp activation. Two opposing hypothesis have been

suggested for the role of TRIM20 since both an inhibitory and activating role have

been reported. Using mice with a targeted mutation of the pyrin gene it was proposed

that TRIM20 sequesters the apoptosis-associated speck-like protein (ASC), involved

in activation of caspase-1 in the inflammasome. This would result in a reduction of

caspase-1 activation and a reduction in IL-lp processing [100]. Conversely, using a
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different system by co-expressing TRIM20 and ASC, it was shown that TRIM20 can 

increase IL-lp processing. To explain this observation it was suggested that a 

pathogen product or a pathogen-associated molecular pattern (PAMP) might bind the 

C-terminal B30.2 domain of TRIM20 and might lead to caspase-1 activation [101, 

102]. It is important to keep in mind that the mouse TRIM20 does not possess a 

B30.2 domain [103], indicating that there may be differences in the mechanism of 

IL-lp regulation between human and mouse.

I.4.4.6. TRIMs in disease: TRIMs and genetic disorders

Mutations in TRIM18 (or MIDI) have been associated with a genetic disease

named Opitz G/BBB syndrome. This disease is characterized by abnormalities of the

upper airways, cleft lip and palate, mental retardation, and gastrointestinal

malformations [104], and additional features involving defects in development of the

ventral midline. Many of the TRIM 18 mutations associated with this disease are

located in the B30.2 domain, attributing an essential role of this domain in TRIM 18

function [105, 106]. The proposed mechanism by which TRIM 18 mutations affect

the differentiation of the midline involves the re-localization of TRIM 18 from its

normal location with the microtubules, to the cytoplasm of the cell. TRIM18 has

been proposed to be required for ubiquitin-dependent degradation of the PP2A

protein phosphatase, which is essential for microtubule dynamics [106]. Although

poorly characterized, another TRIM described to be involved in a genetic disorder is

TRIM37 (also called MUL). Mutations in the C-terminal region of TRIM37 cause a

frameshift in the DNA sequence, which would be predicted to produce a truncated

protein [107]. These mutations have been associated with muscle-liver-brain-eye
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nanism (Mulibrey nanism), a genetic recessive disorder that is characterized by 

growth failure of prenatal onset, cardiomyopathy, and hepatomegaly [108, 109].

1.5. The innate and adaptive immune response. An overview

Defence against pathogens is initiated by antigen presenting cells (APC),

including macrophages and dendritic cells (DC) which recognize molecular

structures or patterns that are unique to microorganisms [110]. This recognition takes

place within minutes when innate immune cells expressing pattern recognition

receptors (PRR), which have a broad specificity, bind molecules that have a common

structural motif or pattern. Viruses, bacteria, fungi, protozoa and parasites have a vast

number of molecular signatures, from proteins and nucleic acids to components of

the cell wall, such as lipopolysaccharide (LPS), peptidoglycan, lipoteichoic acids and

cell-wall lipoproteins or fungal P-glucan. The compounds that can activate PRRs

including toll like receptors (TLRs) are usually referred as pathogen-associated

molecular patterns (PAMPs), and result in activation of microbicidal effector

pathways, inflammation and initiation of the adaptive immune response [110].

Macrophages play a role in the early phases of the immune response by producing

cytokines and killing pathogens via various mechanisms including reactive oxygen

and nitrogen intermediates, as well as engulfing apoptotic cells [111]. DC

continuously take up, process, and present antigens in the form of peptides in the

context of the major histocompatibility complex (MHC) which are recognized by the

T cell receptor (TCR) on T lymphocytes, and are fundamental APCs initiating

adaptive immune responses. APCs such as DC can present peptide bound to MHC

Class I to CD8+ T cells to activate proliferation and effector functions such as

cytolytic activity, or MHC Class II to CD4+ T helper cells to induce proliferation or
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differentiation of effector cells producing different patterns of cytokines [112-115]. A 

schematic representation of innate and adaptive immune cells, and the cytokines they 

produce is shown in Figure 1.5. Once activated by microbes and/or their products, 

DCs can activate T cells, including CD4+ T cells of the adaptive immune response, 

and produce factors to induce their differentiation into CD4+ T helper (Th) effector 

cells. These include T helper type 1 (Thl) cells producing the hallmark cytokine 

IFNy, which is essential for eradication of intracellular pathogens but can also be 

involved in autoimmune inflammation [116, 117], or Th2 cells producing the key 

cytokines IL-4, IL-5 and IL-13, important for anti-helminth responses but also 

implicated in allergic inflammation [118, 119]. Although not covered by our study, it 

should not go unmentioned that a third independent effector population has been 

recently described, the Thl7 subset, which produce the cytokine IL-17 important in 

the host defence against extracellular bacteria such as Klebsiella pneumoniae [120- 

122] but also involve in autoimmune inflammation [123].

During an immune response, these effector responses can be regulated by 

naturally occurring Foxp3+ CD25+ T regulatory cells (CD25+ Treg) that do not 

produce pro-inflammatory cytokines upon in vitro stimulation. The effector 

responses can also be regulated by the immuno-suppressive cytokine IL-10, which 

can be produced by many cells of the immune system including CD8+ T cells, CD4+ 

Thl, Th2, antigen-driven Treg (IL-10 Treg), as well as Foxp3+ CD25Treg under the 

right conditions [124](Figure 1.5). Intense research on the molecular mechanisms of 

regulation of the innate and adaptive immune systems has led to the finding of a 

limited number of TRIM molecules as important players in these signalling 

pathways. As an increasing number of TRIM molecules are discovered to have 

immune functions, it remains to be seen if this family of proteins indeed has been



selected through evolution to play a role in the immune system and more research is 

required to test their in vivo relevance.

1.5.1. The innate immune response

1.5.1.1. Innate recognition of pathogens by TLRs and other PRRs

All animal cells have developed different mechanisms of defence against

pathogens that prevent infection and spread. As part of this mechanism the innate 

immune response acts as soon as there is recognition of PAMPs of the foreign 

particle by the PRRs on the innate immune cells. This allows the host to activate 

pathways that lead to production of protective bioactive molecules. For this to 

happen the host organism has developed a complex system that senses different 

invaders to respond accordingly and specifically, to establish a limited but effective 

response against a particular pathogen. PRRs include members of the TLR family 

which can recognize patterns found in viruses, bacteria, fungi and protozoa [125].

The well-conserved features in pathogens, summarized in Figure 1.6, include

bacterial cell-surface lipopolysaccharides (LPS) (ligand for TLR4); lipopeptides 

(ligand for TLR1, TLR2 and TLR6); proteins such as flagellin from bacterial flagella 

(ligand for TLR5); double-stranded RNA of viruses (ligand for TLR3) or the 

unmethylated CpG DNA of some bacteria and viruses (ligand for TLR9); and single 

stranded RNA (ssRNA ligand for TLR7,8) from some viruses. Interestingly, most of 

these TLRs, TLR3, 7, 8, 9, are localized in endosomes, since many viruses are 

internalized to the cell via this compartment, and this has been suggested as a 

mechanism for distinguishing self from non-self [126].

However, there are also viruses that can replicate in the cytoplasm and 

therefore cytoplasmic PRRs that are not members of the TLR family also exist,
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including the melanoma differentiation factor-5 (MDA5) which recognizes dsRNA, 

and the retinoic acid inducible gene (RIG-I) which recognizes ssRNA or 

5’phosphorylated RNA from influenza virus [127]. This indicates that 

compartmentalization is also an important determinant of PRR recognition and 

requires the co-localization of the receptor with the viral product at the precise site of 

replication. Importantly, activation of any of these pathways by pathogens results in 

the production of effector molecules that are essential to combat pathogens. 

Differential expression of TLR or non-TLR molecules in different populations of 

DC, macrophages and B cells dictate the intensity and specificity of these responses 

and therefore it is essential to study purified primary cell populations to understand 

the role of these PRRs during infection.

1.5.1.2. Differential TLR expression by distinct DC populations

DC comprise several cell subsets with diverse functions and have been shown 

to have different capacities to direct Thl differentiation [128]. Based on their cell 

surface markers and origin (e.g. spleen or bone marrow), mouse DC expressing the 

CD llc marker can be classified into different subsets which include splenic- 

CD 11 c+/CD 11 b+/CD8a'(myeloid DC), splenic-CDl lc+/CDl lb/CDSalDC, or 

splenic plasmacytoid DC (pDC). These pDCs express dull levels of C D llc and are 

CDllb7B220+/Ly-6C+/CD62L+ [129-131], in addition are recognized by the 

antibody 120G8, which binds the antigen bone marrow stromal cell Ag 2 

(BST2)[132, 133]. Bone marrow (BM) precursors can be differentiated using 

granulocyte-macrophage colony-stimulating factor (GM-CSF) to obtain myeloid DC 

(mDC) expressing CD llc, and CD lib  markers. Also, Fms-like tyrosine kinase-3 

ligand (FLT3-L) can stimulate development from BM of a population that is enriched



in B220+/120G8+ pDC precursor and CDllc+/CDllb+ myeloid populations which 

can be separated and purified by flow cytometry. These distinct DC sub-populations 

in mouse and human have been shown to express different levels of TLR mRNA and 

protein, and consequently to respond to distinct microbial products (summarized in 

Figure 1.6)[128, 134-137]. It has been demonstrated that due to high expression of 

TLR4 on mouse splenic DC, mDC and macrophages these cells have the ability to 

respond to LPS [128, 136]. Conversely, splenic and BM derived pDC, which have an 

important role in regulating anti-viral responses, do not respond to LPS due to an 

absence of TLR4 expression but are activated by CpG due to their high expression of 

TLR9. This differential expression affects secretion of pro-inflammatory cytokines, 

and therefore their capacity to induce Th effector cell development. Mouse splenic 

and BM derived pDC also express TLR7 and respond to ssRNA (from viruses like 

Influenza) to produce large amounts of IFNa/p [128, 138]. Mouse pDC are also 

activated by R-848, an imidazoquinoline resiquimod synthetic agonist of TLR7/8, to 

produce many type-I IFNs including IFNa, IFNp, and also produce IL-12 [128, 138]. 

Importantly, mouse TLR9 expression is not restricted to pDC but can be found in 

other DC subsets as well as macrophages and B lymphocytes, whereas human TLR9 

is only expressed on pDC and memory B cells [134, 138](see Figure 1.6).

Mouse BM derived mDC express TLR2 and respond to its ligand Pam3Cys (a 

synthetic lipopeptide that mimics the acetylated amino-terminus of LPS), whereas 

mouse pDC express no TLR2 and do not respond to this ligand. CD8a+ DC also 

express lower levels of TLR5 message than other spleen DC subsets but, in contrast, 

display the highest expression of TLR3 message, which is absent from pDC [138, 

139]. TLR3 is activated by dsRNA from viruses to produce large amounts of IFNp 

highlighting the importance of this cytokine to control viral infections. This is
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interesting since TLR3 is widely expressed on non-pDC, and is also present at high 

levels on macrophages and on some non-haematopoietic cells such as epithelial cells 

[138, 139]. Interestingly, although the various TLRs share significant portions of 

their signalling cascades, each have also unique pathways and thus each ligand can 

induce a different cytokine response, especially given the differential expression of 

the receptors just described (see Figure 1.6 and 1.7). The pattern of cytokine 

production induced by TLR ligation is also partly determined by intrinsic 

characteristics of the specific DC population. For example, TLR9 ligation of mouse 

pDC leads to production of IL-12p70 as well as IFNa/p, whereas BM derived mDC 

produce only IL-12p70 and IFNp but not IFNa [128]. Therefore intrinsic differences 

between DC populations may explain the fact that some pathogen-derived products 

induce different patterns of cytokine production in different DC subsets. As a 

consequence of this differential expression of TLRs and production of unique sets of 

cytokines, we postulated that this may also result in differential up-regulation of 

TRIM proteins in different DC populations depending on exposure to specific TLR 

ligands.

1.5.1.3. Innate recognition of viruses

The innate response to viruses includes constitutively expressed molecules of 

intrinsic immunity such as the Friend-virus susceptibility gene (FV1) or TRIM5a 

which target incoming retroviruses; Mx proteins, which target the nucleoproteins of 

bunya- and orthomyxoviruses; or APOBEC-3G (apolipoprotein B mRNA-editing 

enzyme catalytic polypeptide-like editing complex), which deaminates retroviral 

genomes to cause viral mutants incapable of replication [140, 141]. However, these 

different intrinsic anti-viral proteins are not always expressed in the cells that are the
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main target of a specific viral infection, in which case the virus is free to replicate. 

Moreover, some anti-viral mechanisms include the induction of proteins that inhibit 

protein translation or cause degradation of RNA which can lead to apoptosis or cell 

death thereby restricting the amounts of virus produced [142], however this is a 

mechanism undesirable in non infected cells. For this reason, cells possess other 

means to induce rapid expression of anti-viral molecules that may not be expressed 

constitutively. Studies have shown that some intrinsic, constitutive anti-viral 

molecules can be further induced to even higher levels after exposure to viruses (e.g. 

TRIM5a and Mx are highly induced by type-I IFNs). Important components of this 

inducible mechanism to sense viruses are the endosomal members of the TLR family, 

TLR3,7,8,9; as are some cytoplasmic non-TLRs including MDA5 and RIG-I. 

Activation of any of the TLR or non-TLR receptors, either by bacterial or viral 

components, results in the production of the pro-inflammatory cytokines such as IL- 

12, IL-6, and TNF. Most importantly, many of these pathways also induce the central 

anti-viral cytokines, type-I Interferons (type-I IFNs), which will be discussed next.

1.5.1.4. The type-I Interferon (IFN) system

One of the most important and extensively studied groups of innate anti-viral 

molecules are the type-I IFNs which are a family of secreted cytokines that can elicit 

anti-viral effects [143]. Type-I IFNs are part of the IFN family of cytokines which 

also include type-II and type-III IFNs. Each of these groups is distinct and signal 

through different receptors. Interestingly however, their receptors trigger common 

downstream signalling pathways, and can regulate many of the same genes [144]. 

Type-I IFNs comprise a large group of genes that varies between different species 

and include the well defined IFN-a, and -(3 and other less defined IFNs such as
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I F N - © , a n d  - k , which all bind the same receptor [143]. In contrast to type- 

II IFN (IFNy), which is predominantly made by NK cells and T cells during adaptive 

immune responses, IFN(3 can be produced by most nucleated cells and is induced 

during viral infections. IFNa is produced predominantly by pDC in response to viral 

infections, although it can also be produced by other cells depending on the 

stimulatory conditions [145]. Moreover, most cells can respond to type-I IFNs 

through the type-I IFN receptor (IFNAR1), which can bind all type-I IFN subtypes 

[144]. The type-I IFNs, and in particular IFNa/p, can activate signal transduction 

pathways through the IFNAR1 that can establish an “anti-viral state” in target cells 

[146]. This includes the induction of many effector molecules that can directly inhibit 

viral replication, although type-I IFNs can also induce other effects including cell 

cycle arrest, apoptosis and have many immuno-modulatory functions [147]. Viruses 

are the main inducers of type-I IFNs but it has been shown that bacterial products 

like LPS can also lead to IFNp production, demonstrating that type-I IFNs are 

important in different effector functions [148, 149].

I.5.I.5. Receptors and signalling to produce type-I IFN

Upon TLR ligation by pathogen products, signalling cascades are initiated via 

Toll/IL-1 receptor (TTR) domain containing adaptors that recruit signalling molecules 

resulting in cytokine production (Figure 1.7). After ligand binding a conformational 

change in the receptor molecules brings together the TIR domains on the TLRs 

where the adaptor proteins can bind [150]. There are four adaptors known to regulate 

the recruitment of signalling molecules in the TLR pathway: myeloid differentiation 

primary-response gene 88 (MyD88), MyD88 adaptor-like protein (MAL, also known 

as TIRAP), TIR-domain-containing adaptor protein inducing IFNp (TRIF also
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known as TICAM1), and TRIF-related adaptor molecule (TRAM also known as 

TICAM2) [150] (see Figure 1.6 and 1.7). All TLRs, except for TLR3, use MyD88, 

whereas TRIF is recruited only by TLR3 and TLR4, resulting after binding of their 

specific ligands, dsRNA (or poly I:C) and LPS, respectively [151]. The TRIF adaptor 

has been shown to be responsible for a MyD88-independent signalling pathway 

giving rise to IFNp [152-154].

Usage of adaptor molecules by the various TLRs was elucidated by using DC 

and macrophages derived from mice lacking the adaptor molecules MyD 8 8 or TRIF 

and testing their responses to various TLR ligands [151]. The activation of both 

MyD88 and TRIF upon TLR4 stimulation by LPS became clear when it was reported 

that murine M yD88-/- DC treated with LPS failed to produce IL-12, IL-6 or TNF, 

but were still able to up-regulate activation markers [155-157]. This MyD88- 

independent pathway of TLR4 signalling via TRIF was subsequently shown in both 

mDC and macrophages to lead to the activation of the IFN regulatory factor-3 (IRF- 

3), a critical transcription factor for induction of IFNp [158, 159](Figure 1.7A). In 

the case of the viral products CpG and ssRNA, TLR7 and TLR9 use only MyD88. 

Although clear differences have been shown in the signalling pathways in 

macrophages, mDC and pDC, the general observation is that the MyD88-dependent 

pathway in macrophages and mDC triggers the release of pro-inflammatory 

cytokines, such as TNFa, IL-6, and IL-12p40, but also the immunosuppressive IL-10 

(found as part of my research and published in [160], discussed more in results). 

MyD88 recruits IRAK4 (IL-lR-associated kinase 4), IRAKI, TRAF6 (TNFR- 

associated factor 6) and TAK1 (transforming-growth-factor-p-activated kinase), 

which leads to recruitment of TAB 1/2 (TAK-binding protein 1/2), and activation of 

MAP kinases and the transcription factor NF-kB to induce pro-inflammatory
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cytokine genes [147](Figure 1.7A). Production of IFNp in macrophages and mDC 

on the other hand, can be induced by MyD88 upon treatment with CpG via IRAKI 

and activation of TRAF3 instead of TRAF6 [161] (Figure 1.7A). In myeloid DC, it 

has also been shown that MyD88 can also couple to IRF5 (interferon-regulatory 

factor 5) to induce pro-inflammatory cytokines [162]. In addition, another study 

showed that IRF-5 may also be involved in the induction of IFNp by macrophages 

upon viral infection. This may partially explain the observed reduction of type-I IFN 

levels in viral infected IRF-5 deficient mice [163]. However, it was suggested that 

IRF-5 is not involved in IFNp production by fibroblasts, indicating that this effect 

may be cell type specific [163]. Other mechanisms for the induction of IFNp have 

also been described. In mDC and macrophages, TLR9 activation can induce IRF-1 

binding to MyD88 that does not require IRF-3 and/or IRF-7. IRF-1 together with 

MyD88 and IRAK-1 activates the IFNP promoter [164], indicating that different 

IRFs can be utilized for the induction of type-I IFNs.

In pDC, signalling to induce type-I IFNs is somewhat different to other cell

types (Figure 1.7B). pDC are extremely important during some viral infections since

they can produce up to half of the circulating type-I IFNs [165]. Moreover, pDC are

unique in the sense that they can readily produce large amounts of IFNa additional to

IFNp. This difference relies on the fact that pDC are unique in their high constitutive

expression levels of IRF-7 which is the alternative option to IRF-3 to produce type-I

IFNs [166](see Figure 1.7 A and B). This activation of IRF-7 occurs via a

phosphatidylinositol-3 kinase (PI3K) dependent pathway upon TLR stimulation [167,

168]. As in mDC, TLR7 or TLR9 ligation leads to recruitment of Myd88 that forms a

complex containing IRAK-4, IRAK-1 and TRAF6 and TRAF3 in FLT3L grown

mixed pDC and mDC [161]. As in mDC, TRAF6 can activate NF-kB through
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TAK1-TAB2-TAB3 and the IKK complex. However the complex containing 

Myd88/IRAK-1/IRAK-4/TRAF6 binds directly to IRF-7 in pDCs [166, 169, 

170](Figure 1.7B). IRF-7 is phosphorylated by IRAK-1 and translocates to the 

nucleus where it can induce transcription [147]. There is also evidence that IRF-5 

bound to MyD88 is also important in the production of type-I IFNs by pDC in 

response to TLR7 and TLR9 ligation [162, 171, 172].

The biological significance of the type-I IFN system to defend the host 

against viral infection is emphasized by the fact that viral products can activate 

different pathways to induce type-I IFNs. Moreover these signalling pathways rely on 

the proper localization of the viral product in the host cell to be recognized by the 

receptor. For example, dsRNA from some viruses can induce type-I IFN production 

by an endosomal pathway via TLR3 and the TRIF adaptor molecule or by a TLR 

independent, cytoplasmic pathway (via RIG-I/MDA5/MAVS) [147, 173, 174] 

(Figure 1.7). dsRNA (or its synthetic analog polyinosinic-polycytidylic acid [poly 

I:C]) which can be delivered to endosomes either by endocytosis of externally 

presented dsRNA or from uncoating of endocytosed viral particles, binds TLR3 

which only uses the TRIF adaptor molecule to induce IFNp and other cytokines [153, 

154, 175]. The TRIF adaptor molecule can recruit TRAF3 and TRAF6 which as 

described for MyD88, can lead to activation of IRF-3 and NF-kB respectively for 

subsequent induction of their respective target genes [147, 161, 176, 177]. An 

alternative pathway to induce IFNp occurs when viral dsRNA localized in the 

cytoplasm by uncoating, transcription or replication can be recognized by the RNA 

helicases MDA-5 and RIG-I [174]. Interestingly, RIG-I can also recognize ssRNA 

molecules containing 5’triphosphates that are present during influenza virus
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replication [178]. MDA-5 and RIG-I can both activate MAVS (mitochondrion 

antiviral signalling protein), a mitochondrion-associated adaptor [179, 180]. MAVS 

can in turn recruit the same components that lead to activation of TRAF3-IRF-3 or 

TRAF6-NF-kB pathways [179, 180] which is similar to the one described for the 

TRIF pathway. Importantly, during the course of this study some members of the 

TRIM family were shown or suggested to be involved in some of these pathways to 

induce type-I IFNs. However, whether signalling through TLRs and their adaptor 

molecules responding to bacterial and viral products results in a direct or indirect 

broad up-regulation of TRIM expression is unknown and is the subject of this thesis.

1.5.1.6 Signalling in response to type-I IFNs and induction of anti­

viral molecules.

All the type-I IFN family of proteins including IFNa (which can be further 

subdivided into 13 different subtypes, IFN-al, -a2, -a4, -a5, -a6, -a7, -a8, -a 10, - 

a l3 , -a  14, -al6 , -a l7  and -a21), IFN-(3, IFN-5, IFN-s, IFN-k, IFN-t and IFN-© 

bind a common heterodimeric cell-surface receptor, which is known as the type I IFN 

receptor (IFNAR1) [143](Figure 1.7C). The Type-I IFN receptor is composed of two 

subunits, IFNAR1 and IFNAR2, which are constitutively associated with the tyrosine 

kinase Tyk2 and the Janus activated kinase-1 (JAK1) respectively. Upon binding of 

type-I IFNs to their receptor, a conformational change occurs resulting in rapid 

phosphorylation of the cytoplasmic tail of the IFNAR1 by Tyk2 which creates a 

docking site for STAT2. In the conventional signalling pathway normally assumed 

for type-I IFN signalling, activation of JAK1 and Tyk2 results in phosphorylation of 

STAT2 (signal transducer and activator of transcription 2) and STAT1 to form a 

STAT1-STAT2 heterodimer which is translocated to the nucleus where IRF-9 is
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attracted to form a complex known as ISGF3 (IFN-stimulated gene (ISG) factor 

3)[147, 181]. These complexes translocate to the nucleus and bind IFN-stimulated 

response elements (ISREs) in DNA to initiate gene transcription. Importantly, this 

ISGF3 complex is the only complex that can specifically bind the ISREs in the 

promoters of certain IFN stimulated genes (ISGs) to initiate their transcription. In a 

recent study it was suggested that this signalling pathway requires acetylation of the 

ISGF3 complex by the CREB-binding protein (CBP), which is usually a nuclear 

protein, while it binds to the receptor [182]. In this study the authors showed that 

CBP acetylates IFNAR2 which in turn creates a docking site for IRF9 leading to the 

formation of the ISGF3 complex containing IRF9-STAT1-STAT2. It was suggested 

that acetylation of both IRF9 and STAT2 by CBP is critical for the activation of the 

ISGF3 complex and association to target genes [182]. It is also important to note that 

there are other member of the STAT family that can be phosphorylated and activated 

by Jakl and Tyk2, in addition to STAT1 and STAT2, including STAT3 and STAT5 

[181].

Importantly and of interest for this thesis is the fact that Type-II IFN 

(composed of IFNy only), although signalling through a different receptor (IFNGR1 

and IFNGR2) shares some features with the type-I IFN signalling, leading in some 

cases, to induction of common genes. However, important differences are also 

present which can account for the expression of specific type-I IFN inducible genes. 

One important difference in the type-II IFN signalling is the formation of STAT1- 

STAT1 homodimers. The activated STAT1 homodimer translocates to the nucleus 

and binds gamma-activation sequences (GAS), a distinct sequence from the ISRE. 

Also distinct to the type-I IFN signalling is the fact that the STAT 1-STAT 1 

homodimer does not require IRF-9 for DNA binding [147]. In contrast to type I IFNs,



IFNy does not induce the formation of ISGF3 complexes and thereby cannot induce 

the transcription of genes that have only ISREs probably accounting for some of the 

different genes that are inducible by type-I IFNs but not IFNy [181]. Moreover, the 

activation of different STATs and formation of different combinations of STAT 

dimers in response to IFNy or type-I IFNs may also account for some specific genes 

induced by each stimulus. In addition to the classical JAK-STAT pathway, IFNa/p 

can also activate the p38 mitogen-activated protein kinase (MAPK) and 

phosphoinositide-3 kinase (PI3K) signalling cascades that are required for the 

generation of cellular responses to IFNs [167, 168, 181]. Moreover, some studies 

have also suggested that the NF-kB pathway is also involved in some of the 

biological effects of type-I IFNs [183]. Whether TRIM expression may be regulated 

directly or indirectly by any of these different pathways will be discussed later in the 

context of the result of my thesis.

I.5.I.7. Biological effects of type-I IFNs and induction of anti-viral

genes.

Type-I IFNs are pleiotropic cytokines that can exert anti-viral functions by 

different mechanisms including immunomodulatory functions, apoptosis, cell cycle 

arrest and the induction of a large number of anti-viral molecules. IFNa/p can up- 

regulate class I MHC molecules in viral infected cells and activate virus specific 

CD8+ T cells [184]. Using mice deficient in the IFNRA1 it was shown that Type-I 

IFNs are important for DC activation in vivo in response to TLR ligands, and a 

specific requirement for IFNs by pDC but not conventional DC (cDC, 

CDllc+/B220- DC) for migration to CD4+ T cell areas was established, probably by 

induction of chemokines [185]. Type-I IFN produced by pDC also plays an essential
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role in activating NK cells to kill virus-infected cells [186]. IFNa/p also promotes 

maturation of DCs [187, 188], and at the same time can link the innate with the 

adaptive immune response by promoting the development of IFNy producing Thl 

cells [128, 187]. In addition to their effects on NK and T cell responses, type-I IFNs 

can affect humoral immunity as demonstrated by the fact that type I IFN potently 

enhanced the antibody response to soluble antigen, allowing for class-switching and 

development of immunological memory in a DC-dependent manner [189].

Additional to all these biological functions, type-I IFNs can induce an “anti­

viral state” in cells exposed to IFNa/p by up-regulation of a wide number of proteins 

that can directly or indirectly inhibit viral replication (Figure 1.7C). Some of the 

anti-viral molecules known to be up-regulated by IFNa/p include the protein kinase 

R (PKR) which is activated by dsRNA and prevents transcription by phosphorylation 

of the transcriptional initiation factor 2 (eIF2a)[190], the 2’5’-oligoadenylate 

synthetase (OAS) which is also activated by dsRNA to degrade cellular and viral 

RNA [191, 192], and the Mx family of proteins which are GTPases that can act by 

recognizing nucleocapsid structures from some viruses and restricting their 

localization thus restricting viral replication [141, 193].

The importance of Type-I IFNs is highlighted by the fact that they induce a 

positive feedback autocrine loop to produce more IFNs as a consequence of the first 

cell targeted by viral infection. IRF-3, broadly and constitutively expressed at a low 

level, is activated by this autocrine loop to promote more Type-I IFN gene 

transcription. Activation of the IFNa/p receptors and STAT1 also induce IRF-7 

which is important in this positive feedback for type-I IFN expression [194-196].
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1.5.1.8. TRIMs in innate immune signal transduction

An increasing number of TRIMs have been reported to have some function in 

signal transduction pathways and many have been suggested to do so by a 

mechanism that involves ubiquitination. This can be either by proteasome dependent 

protein degradation of target signalling molecules, or using ubiquitin as a moiety that 

mediates ubiquitin dependent protein-protein interactions leading to activation of 

signalling pathways. Interestingly and of relevance for this thesis is the fact that 

many of these TRIM dependent signalling pathways are related to immune responses 

including signalling to induce cytokine production (Figure 1.8). For example, 

TRIM25/EFP has recently been reported to be involved in the RIG-I signalling 

pathway to induce IFNp. It was shown that TRIM25 ubiquitinates RIG-I which is 

required for MAVS (mitochondrion antiviral signalling protein) binding as well as 

the ability of RIG-I to induce anti-viral activity against vesicular stomatitis virus 

(VSV) and Newcastle disease virus (NDV) by inducing IFNp [12]. Another 

interesting example of the effects of ubiquitination by TRIMs in immune signalling is 

the case of TRIM21/Ro52 which was proposed to be involved in signalling to induce 

IL-12p40 production by non-proteolytic mechanism of ubiquitination of IRF-8 in 

macrophages stimulated with IFNy and CpG [98]. However, in another study it was 

also proposed that TRIM21 can act as a negative regulator of IFNp production by 

inducing IRF-3 ubiquitination and proteasome dependent degradation upon 

stimulation with LPS, poly I:C or infection with Sendai virus [97]. Although these 

two studies do not give a deep insight on the signalling mechanisms involved and 

both used cell lines, this suggests that the same TRIM molecule can act as a positive 

and negative regulator depending on the stimulatory conditions and the cells used.
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Moreover this also indicates that the same TRIM molecule may be involved in 

signalling by both degradation and non-degradation pathway of ubiquitination.

Other studies have shown that TRIMs may be involved in signalling by non- 

ubiquitination pathways. This is the case of TRIM27/RFP which can be 

phosphorylated by IKKa,p,s and TBK-1, members of the NF-kB signalling pathway 

[197]. Moreover, it was shown that TRIM27 inhibited NF-kB and/or ISRE activation 

mediated by these IKKs triggered when cells were stimulated with TNF, IL-1, poly 

I:C, or viral infection. It was also shown that the phosphorylation of TRIM27 led to 

IRF-3 retention in the cytoplasm suggesting that TRIM27 may sequester IRF-3. 

Therefore, TRIM27 negatively regulates the signalling involved in the anti-viral 

response by targeting the IKKs which phosphorylate IRF-3 and critically involved in 

virus triggered and TLR3 mediated signalling leading to induction of type-I IFNs 

[197].

TRIM30a has also been shown to regulate TLR signalling by a ubiquitin 

independent pathway. It was shown that TRIM30a interacts with the TAB2-TAB3- 

TAK1 adaptor-kinase complex involved in the activation of the transcription factor 

NF-kB. TRIM30a promoted degradation of TAB2-TAB3 and inhibited NF-kB 

activation induced by TLR signalling by a mechanism dependent on lysosomes but 

independent of proteasomes. Over-expression of TRIM30 resulted in inhibition of 

IL-6 and TNF production suggesting that TAB2,3 degradation results in the 

inhibition of NF-kB activation after TLR stimulation [198]. Interestingly, TRIM30a 

expression depended on NF-kB activation suggesting functions as a feedback 

negative regulator [198].

TRIM8/GERP, a poorly characterized member of the TRIM family has been 

shown to interact with the suppressor of cytokine signalling-1 (SOCS-1). SOCS
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proteins are known to be important in negative regulation of cytokine signalling to 

control the intensity and duration of the signal [199]. Co-expression of TRIM8/GERP 

with SOCS-1 decreases the stability and thus the levels of SOCS-1 which correlated 

with decreased inhibition of IFNy-induced JAK-STAT activation, suggesting that 

TRIM8/GERP may be a positive regulator of IFNy signalling [200].

In the TGF(3 signalling pathway, TRIM 19 and TRIM33 have been reported to 

play different important roles. TGFp family members bind to membrane 

serine/threonine kinase receptors that phosphorylate Smad transcription factors and 

in turn activate transcription of TGFp responsive genes [201]. TRIM33/TIFly has 

been shown to interact specifically with phosphorylated Smad2/3 in haematopoietic 

stem cells in response to TGFp and this results in induction of erythroid 

differentiation [202]. The essential role of TRIM33 during erythroid differentiation is 

supported by the fact that TRIM33 knockout die during early somitogenesis [203]. 

Conversely, the cytoplasmic isoform of TRIM19/PML (cPML) has been suggested to 

be involved in the TGFp dependent- growth arrest, induction of cellular senescence 

and apoptosis. cPML binds to Smad2/3 and SARA (Smad anchor for receptor 

activation) for subsequent signalling of TGFp target genes. TRIM19/PML knockout 

MEFs have impaired phosphorylation and nuclear translocation of the TGFp 

signalling proteins Smad2/3, as well as impaired induction of TGFp target genes 

identifying cPML as a regulator of the TGFp signalling pathway [204].

TRIM 18/MID 1, involved in Optiz syndrome (a defect of the midline during 

embryogenesis), is an E3 ubiquitin ligase that associates with the catalytic subunit of 

protein phosphatase 2A and targets it for ubiquitin-dependent degradation. It has also
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been shown that TRIM 18 is itself a target of MAPK phosphorylation which suggests 

that TRIM 18 may be involved in signalling pathways to produce cytokines.

At the transcriptional level, TRIM28/KAP1 (TIF-1(3) has been suggested to 

be a negative regulator of type-I IFN induced transcription. It was shown that 

TRIM28/KAP1 interacts with STAT1 and negatively regulates IFN/STAT1 -mediated 

IRF-1 gene expression in collaboration with histone deacetylase complex [56]. It was 

also previously shown that TRIM28/KAP1 interacts with STAT3 and negatively 

regulates IL-6/STAT3-mediated gene transcription suggesting that TRIM28 may act 

as a general transcriptional repressor for a variety of proteins involved in cytokine 

signal transduction pathways [57]. Interestingly, this negative role of TRIM28 on 

gene transcription has important implications in silencing of retroviral transcription. 

Replication of MLV is restricted in embryonic carcinoma and embryonic stem cells 

where TRIM28 forms a complex with histone methyltransferases, histone deacetylase 

and HP1 family members to methylate histone HI and promote chromatin 

condensation [59, 60]. This report highlighted the importance of TRIMs as potential 

viral restriction factors using transcriptional mechanisms to inhibit viral replication.

An overview of the many TRIMs involved in signalling pathways is shown in 

Figure 1.8.

I.5.I.9. Anti-viral function of TRIM proteins

The TRIM family of proteins has recently gained importance by the discovery 

that TRIM5a from African green monkeys and macaques acts as a restriction factor 

for HIV-1 [33]. Since then other members of the TRIM family have also been found 

to have some anti-viral function and this led to the suggestion that the entire family

40



of TRIMs may be a component of an innate or intrinsic immune response to viruses 

[22, 140, 205-207]. This mechanism of restriction of viral replication has been 

assumed to rely on a set of anti-viral molecules that are constitutively expressed in 

most cells of an organism in a species-specific manner [140]. This differs to the 

“inducible” type-I IFN system where the expression of anti-viral molecules increases 

upon exposure to viral infection [142]. This is important since most of the studies on 

TRIMs have been done using transformed cell lines and over-expression assays 

where the levels of TRIM molecules may be artificial and do not represent 

physiological conditions. Of note is the fact that some of the TRIM molecules found 

to have anti-viral activity are themselves inducible by type-I IFNs including TRIM5a 

[208], further supporting their important role against viral infections. Most of the 

viruses that have been studied and found to be affected by TRIM proteins are 

retroviruses, possibly because these viruses are the most widely studied [22, 209, 

210]. It should be noted that the restriction activity of TRIM proteins can take place 

at different stages of viral replication including viral entry, transcription of viral 

genes or viral release from the cells [22, 210].

1.5.1.9.1. TRIM5a as a species-specific restriction factor

TRIM5a is the largest isoform encoded by the TRIM5 gene and is the only 

isoform to possess a B30.2 domain which is responsible for its anti-HIV-1 function 

[24, 32]. Originally, the human TRIM5a gene (previously named REF1, [211]) was 

shown to encode a restriction activity to the N-tropic form of the Murine leukaemia 

virus (N-MLV) [211]. Later studies demonstrated that this restriction activity varied 

between species and viruses, as TRIM5a from African green monkeys could restrict 

HIV-1, HIV-2, EIAV (equine infectious anaemia virus), N-MLV and SIVmac while
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TRIM5a from Macaques was only able to restrict HIV-1 [22]. Some insight has been 

gained on the mechanism of viral restriction. TRIM5a blocks HIV-1 replication at 

the stage of early entry to the cells before reverse transcription [33, 212]. Like other 

TRIMs, it is believed that TRIM5a possesses E3 ubiquitin ligase activity and can be 

auto-ubiquitinated [213, 214] leading to a rapid proteasome dependent degradation 

[215]. Therefore it has been suggested that TRIM5a interacts with hexameric capsids 

of the incoming virus and its rapid turnover by the proteasome potentially targets 

virions to degradation. However, proteasome inhibitors do not rescue HIV-1 

infectivity suggesting that TRIM5a may act by more than one mechanism. Another 

simple mechanism could be the rapid uncoating of incoming HIV-capsids by 

TRIM5a, before the virus has the opportunity to reverse-transcribe [209].

It is important to note that, although there is some controversy as whether the 

TRIM5 gene exists in mouse (possible errors in the annotated mouse genome because 

of multiple gene duplications, unpublished observations), TRIM5a protein has not 

been found to be expressed in rodents, and reciprocally its phylogenetically related 

homologues TRIM 12 and TRIM30 are only found in mouse but not in humans [216]. 

Although TRIM30 has been suggested to have some anti-viral activity [198, 217, 

218] it remains to be established if the other relatives of TRIM5 found in mouse may 

also have anti-viral activity. Whether there is an alternative biological function of 

TRIM5a and some of its related TRIMs in non infected cells is still unknown. 

Therefore it is of interest to speculate that this group of TRIMs may have essential 

functions in the ubiquitin pathway in non infected cells while at the same time may 

act as restriction factors to viruses.
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I.5.I.9.2. TRIM19/PML anti-viral activity

As previously mentioned, TRIM19/PML which has been implicated in many 

functions, is an essential component of the nuclear bodies (NB) where several viruses 

have been observed to replicate [219, 220]. NBs are structures composed of many 

proteins that are found in the nucleus tightly bound to the nuclear matrix [221, 222]. 

NBs interact extensively with chromatin fibres in genomic regions that are 

transcriptionally active and therefore it has been suggested that NBs and 

TRIM19/PML are important in regulation of transcription [31]. Although the study of 

TRIM19/PML is complicated by the fact that some anti-viral molecules also 

associate with the NBs (e.g. Mxl, SP100, [220]), there is evidence that human 

TRIM 19 itself can inhibit a large number of viruses including herpes simplex virus-1 

(HSV-1), Ebola virus, lymphocytic choriomeningitis virus (LCMV), Lassa virus, 

Influenza virus, vesicular stomatitis virus (VSV), rabies virus, HIV-1, human foamy 

virus (HFV) [22]. However most of these studies failed to prove a mechanism of 

action or demonstrate a definitive direct role of TRIM 19 on inhibition of viral 

replication. TRIM 19 expression is known to be induced by type-I IFNs which also 

leads to an increase in size and numbers of NBs [223-225] supporting its role as anti­

viral effector. Many studies have been performed by overexpression of TRIM 19 or 

using murine embryonic fibroblasts (MEFs) from mice lacking TRIM 19 and 

therefore the real physiological role of TRIM 19 during viral infections is still 

unknown. Only one study has addressed the in vivo role of TRIM19/PML by 

infection of PML -/- mice infected with LCMV or VSV. This study showed that 

TRIM19/PML knockout mice are more susceptible to lethal immunopathology by 

LCMV and exhibit higher levels of VSV replication [226], however the mechanism 

of inhibition remains elusive. The fact that some viruses have developed strategies to



disrupt the integrity of the PML-NBs supports the role of TRIM19 and PML-NB in 

anti-viral function. For example, LCMV encodes an 11 kDa RING finger protein 

called Z protein which associates with the PML-NB and induces relocation of 

TRIM19/PML to the cytoplasm, where TRIM 19 and the Z protein bind to the 

elongation factor eIF4E to inhibit translation [22, 220]. A similar mechanism has 

been reported for Rabies virus which expresses a phosphoprotein P, a cofactor of the 

viral polymerase which controls viral transcription, and sequesters TRIM 19 in the 

cytoplasm. This P protein has been shown to inhibit the IFN signalling pathway by 

blocking STAT1 translocation to the nucleus [227], a mechanism that could involve 

TRIM19/PML since STAT1 has also been shown to interact with PML [48]. It 

should not go unmentioned that there are several isoforms described for 

TRIM19/PML, all containing the Tripartite motif but differing in the C-terminal 

region, which may help to explain the large range of cellular functions and 

interacting partners of TRIM 19.

Despite the overwhelming evidence supporting the role of TRIM 19 as an 

antiviral effector, it has been suggested that since TRIM19/PML lacks traces of 

evolutionary positive selection or evolutionary pressure, this TRIM may not have 

anti-viral function or may act by indirect mechanisms which do not include direct 

interactions with the pathogen [228]. Furthermore, the fact that TRIM 19 is also 

involved in regulation of cytokine signalling (i.e. as a negative regulator of IFNy 

signalling [48]) may also suggest a possible indirect mechanism of anti-viral activity. 

Therefore, more studies are needed to clarify the potential physiological role of 

TRIM19/PML as anti-viral effector, specially using relevant physiological systems 

including the use of primary cells and in vivo systems.
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1.5.1.9.3. Other TRIMs with suggested anti-viral functions

In addition to TRIM5a and TRIM19/PML other TRIMs have been found to 

interfere with viral replication including TRIM1 [229], TRIM22, TRIM32 [22], 

TRIM25 [12] and TRIM28 [60]. Human TRIM1 was found to restrict MLV but not 

HIV-1 [229]. By contrast TRIM18, a closely related protein of TRIM1 which shares 

about 80% homology, has not been found to restrict any virus thus far. TRIM32 has 

been shown to interact specifically with the transactivation of transcription (Tat) 

protein of HIV-1, HIV-2 and equine infectious anaemia virus (EIAV) in the nucleus 

of the cells [230], therefore TRIM32 may act by inhibiting transcription of viral 

genes. Similarly, TRIM22/STAF50, has been suggested to control levels of HIV-1 

virus by down-regulating the HIV-1 Long Terminal Repeat (LTR)-directed 

transcription. TRIM22 has also been shown to be induced by IFNs supporting its 

potential role to inhibit HIV transcription [218]. TRIM45 can inhibit the 

transcriptional function of AP-1 and ELK-1 [39] which are transcription factors that 

may be used by some viruses for transcription of viral genes.

Importantly, some recent studies have shown the importance of TRIMs in 

regulating cytokine signalling pathways potentially involved in inhibition of viral 

infection. For example, TRIM25 was shown to ubiquitinate RIG-I and initiates 

signalling to produce IFNp. The importance of this involvement in IFN signalling in 

anti-viral activity was supported by the observation of higher levels of VSV in MEFs 

lacking functional TRIM25 protein as compared to WT MEFs [12].

A large number of TRIMs have been tested in vitro by transduction assays for 

viral restriction activity against a selected group of GFP-labelled retroviruses 

including HIV-1, HIV2, SIVmac, EIAV (equine infectious anaemia virus), MLV and 

prototypic foamy virus (PFV). This study suggested that human TRIM6, 18, 19, 21,
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and 22 lacked activity against this panel of retroviruses whereas TRIM1, TRIM5 and 

TRIM34 showed weak but specific inhibition of HIV-2/SIV(MAC), and TRIM34 

also inhibited EIAV [210]. A different study using a larger panel of TRIMs could 

discriminate between viral restriction at the early stage (before viral gene 

transcription) or late stage of viral replication [231]. In this study, it was shown that 

mouse TRIM8, 10, 11, 56 and human TRIM11, 26, 31 inhibited HIV entry, while 

human TRIM25, 26, 62 and mouse TRIM8, 25, 31, 56 affected N-MLV entry. In 

terms of the inhibitory effect of viral release this analysis identified the human TRIM 

proteins 15, 26, 32, and the mouse TRIM proteins 11, 25, 27, 56 as factors that 

specifically affected HIV release from cells, but not viral gene expression [231]. 

Taken together, results from different studies need to be carefully interpreted 

depending on the biological system used, the panel of viruses tested and the stage of 

viral replication. Nevertheless these studies denote the difficulty of working with 

large number of viruses and TRIM molecules and support the increasing evidence 

that TRIMs may act broadly as anti-viral molecules.

1.5.2. The adaptive immune response

In addition to the role of DC and macrophages during an innate immune 

response, DCs are fundamental in stimulating the adaptive immune response by 

acting on B and T cells. The interactions between DCs and CD4 T cells determine the 

fate of an immune response to pathogenic microbes and are dependent on the 

maturation and differentiation status of DCs and cytokines [232]. In immature state, 

DCs are unable to stimulate T cells because they lack the co-stimulatory molecules to 

signals for T-cell activation, such as CD40 and CD86 [232]. DCs are specialized to 

capture antigens and these antigens are able to induce full maturation and



mobilization of DCs. Immature DCs presenting endogenous antigenic peptides 

complexed to MHC class I molecules to CD8 T cells with cytotoxic capacity to 

eliminate infected cells and attack transplants and tumour cells [232]. On the other 

hand, DC up take antigens from incoming pathogens, process them and present them 

in the context of MHC class II molecules to CD4 T helper cells. This interactions 

lead to up-regulation of co-stimulatory molecules, for example CD40L on the T cell 

that binds CD40 on the DC, which in absence results in anergy [233]. Activation of 

naive CD4+ T cells requires signals through both TCR and co-stimulatory molecules 

such as CD28 [234, 235], and antigen specific signalling is achieved by interaction of 

MHC bound to a peptide and the TCR.

DCs have also major effects on B cell growth and immunoglobulin secretion. 

The antibody response depends on B cells and DCs. DCs activate and expand T- 

helper cells, which in turn induce B-cell growth and antibody production. On the 

other hand DCs stimulate the production of antibodies directly and the proliferation 

of B cells that have been stimulated by CD40L on activated T cells. DCs also 

orchestrate immunoglobulin class-switching of T-cell-activated B cells [236].

Engagement of TLRs on DCs by TLR ligands such as LPS or CpG also leads 

to up-regulation of MHC, co-stimulatory molecules and cytokines [232]. Naive 

CD4+ T cells producing the cytokine IL-2 clonally expand and differentiate into at 

least two subsets, Thl and Th2 populations, important in mediating the development 

of the host-protective response and are distinguished by the cytokine profiles and 

their capacity to protect the host against intracellular pathogens or helminth 

infections respectively [116-118, 237, 238](see Figure 1.5). Another cell subset, the 

T hl7 subset, which produce the cytokine IL-17 important in the host defence against 

extracellular bacteria such as Klebsiella pneumoniae [120-122], can also develop.



Intense research on the molecular mechanisms of the general immune 

response has revealed some members of the TRIM family to play a role in signal 

transduction pathways, however their potential role in the development of these Thl 

and Th2 subsets remains elusive.

1.5.2.1 The Thl response

In response to viruses, intracellular pathogens and bacteria, DCs secrete IL-12 

cytokine which directs Thl cell differentiation. Thl cells produce IFNy and TNFa 

and play a central role in cell-mediated immunity important for eradication of 

intracellular pathogens such as bacteria, parasites, yeasts and viruses in part through 

the activation of the microbicidal activity and cytokine production of macrophages 

[116, 117]. Alongside a Thl response is common to observe the production of 

opsonizing IgG2a antibodies, as well as the activation of natural killer (NK) cells and 

cytotoxic CD8+ T cells expressing IFNy, perforin and granzymes, which also serve to 

eradicate pathogens [116-118, 237, 238]. Importantly, if uncontrolled, Thl cells can 

mediate immunopathology and have also been implicated in autoimmune diseases 

such as type-I diabetes and multiple sclerosis [239]. The differentiation pathway for 

the development of this Thl response can be mediated by a number of factors, 

including the dose and the affinity of the peptide antigen-TCR interaction [128] and 

co-stimulatory interactions between cell-surface . molecules [240-243]. The 

mechanism of IFNy production by Thl cells has been shown to be selectively 

mediated by a transcription factor termed T-bet (T-box expressed in T cells) which is 

induced in Thl cells but not Th2 [244]. T-bet acts by re-modelling and activating the 

IFNy gene, inducing expression of IL-12R(32 to augment Thl signal, and interacts 

with the Th2 transcription factor GATA3 to inhibit Th2 signalling [244, 245]. IL-12,
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produced by appropriately activated macrophages and DC, is crucial for the 

development of Thl responses by activation of the transcription factor STAT4 

through the IL-12 receptor (IL-12R, consisting of IL-12R(31 and IL-12Rp2) [246]. 

IL-18 synergizes with IL-12 to stimulate high levels of IFNy required to eradicate 

intracellular pathogens [247, 248]. In humans it has been shown that in addition to 

IL-12, IFNa can also activate STAT4 to generate Thl responses, although this was 

not observed in mice [249]. To date, there has not been any TRIM member described 

to have a selective role in the Th cell differentiation. Although expression of some 

members of the TRIM family has been shown to be up-regulated upon addition of 

IFNy to the cells in culture, none of these TRIMs have been shown to have any 

specific role in Thl cells and their expression and specific role in these cells is as yet 

unknown.

1.5.2.2. The Th2 response

In contrast to the Thl response to intracellular pathogens, infections with 

multicellular parasites, such as helminthes, generally lead to differentiation of Th2 

cells, which produce IL-4, IL-5 and IL-13 and when uncontrolled contribute to 

eosinophilic inflammation and allergic reactions [118, 119]. A Th2 response is 

primarily responsible for activation and maintenance of mast cells, eosinophils and B 

cell growth factors [237] and is characterized by high IgGl and IgE antibody isotypes 

that can instruct a humoral-mediated response to eradicate nematodes, helminths and 

other extra-cellular pathogens [118, 237, 250]. Binding of IL-4 to its receptor 

activates the JAK-STAT6 and IRS2 signalling pathways [251]. IL-4 can promote the 

growth or differentiation of Th2 by up-regulating the transcription factor GATA-3 

[252-254], a zinc finger transcription factor that remodels the IL-4 locus allowing
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transactivation of IL-4, IL-5, IL-3, and inhibits Thl development by blocking the 

Thl cytokine IFNy via direct down-regulation of STAT4 expression [255, 256]. 

Importantly, differentiation of Thl and Th2 cells can be inhibited by TGFp [257].

It will be of interest to determine whether TRIMs may also be differentially 

expressed in these subsets.

1.5.2.3. Regulatory T cells (Tregs)

T regulatory cells (Treg) are CD4+ T cells that inhibit immunopathology and 

autoimmune diseases and have suppressive effects on CD4 or CD8 T cell 

proliferation and many immune responses including those against infectious 

pathogens [124, 258]. The best defined is characterized by the expression of the 

forkhead/winged helix transcription factor Foxp3 important for their development 

and function [259]. Other cells have also been suggested to have regulatory functions 

that do not express Foxp3 but produce inhibitory cytokines such as IL-10. These cells 

inhibit naive T-cell proliferation in vitro and autoimmune pathologies such as 

experimental autoimmune encephalitis (EAE) in vivo, an inflammatory central 

nervous system (CNS) pathology [124, 258, 260, 261]. However, it should be noted 

that IL-10 was originally described as a cytokine produced by Th2 cells, and it is now 

clear that it is produced by many other cells, including Thl cells, B cells, 

macrophages and DC [262, 263] in addition to regulatory T cells [124, 258].

As mentioned above, Tregs and/or IL-10 and TGFp are involved in inhibiting 

hyper-reactive responses like autoimmune diseases and inflammatory bowel disease, 

but they are important also in regulating innate and adaptive immune responses to 

invading pathogens to avoid host damage but as a penalty may result in chronic 

disease. In this respect, nothing is known about the function of TRIM proteins in the
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development or function of these cellular subsets. It will be interesting to see if IL-10 

can also induce or inhibit expression of certain TRIM proteins in specific cellular 

subsets or in cells that produce IL-10.

1.5.2.4. Proposed roles of TRIMs in T cells

It has been suggested that TRIM proteins can have an effect in activation of T 

cells and could be involved in changing the fate of the immune response. For 

example, expression of TRIM8 decreases the repression of IFNy signalling mediated 

by SOCS-1 [200]. Therefore, it is of interest to determine whether expression of 

TRIM8 is restricted to a specific cell type and whether its expression is up-regulated 

in response to a specific stimulus. Another example of TRIM function in T cells is 

the finding that over expression of TRIM21/Ro52 in Jurkat T cells resulted in 

enhanced IL-2 production following CD28 stimulation. Furthermore, transfection of 

anti-Ro52-specific small RNA duplexes partially blocked the expression of 

TRIM21/Ro52 in Jurkat T cells, and resulted in decreased IL-2 production via the 

CD28 pathway [264].

Many viruses target T cells because they are essential in achieving effector 

responses to protect from pathogens. Thus it would be expected that T cells should 

have a mechanism to block infection of certain viruses and bacteria and in the same 

way viruses have evolved mechanisms to evade this possible line of defence. TRIMs 

are an excellent candidate for this function since they have the capability of 

interacting with many proteins and form high molecular weight complexes in specific 

compartments where they can target intracellular pathogens and viruses. Moreover, 

their potential ubiquitin ligase activity that can target proteins for degradation is 

another way of blocking successful infection of pathogens. Induction of TRIM



proteins in response to cytokines can be a specific way of regulating immune 

responses depending on the type of pathogen and the type of immune response 

required.

1.6. Aims of this Thesis

In this study we have used a systematic approach to determine the expression 

of representative TRIMs in a broad number of primary immune cells in an attempt to 

understand firstly, how TRIM molecules are regulated and secondly, to obtain 

potential leads as to their function. We hypothesized that the patterns of TRIM 

mRNA expression in effector cells of the immune system, which produce different 

cytokines, may provide information to help delineate their potential function in innate 

and adaptive immune responses.
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Figure 1.1. Schematic representation of the RBCC/TRIM motif structure.
A) Representation of the Tripartite motif (TRIM) composed of a RING finger domain (R) 
proposed to have ubiquitin ligase activity, followed by a B-box domain (B), the defining 
domain of the family, and the coiled-coil motif (CC), an hyper-helical structure predicted by 
bioinformatics. The different domains found in the C-terminal region of TRIM proteins are 
listed below a generic C terminal domain. Abbreviated as: BROMO, bromodomain; 
MATH, meprin and TRAF homology domain; NHL, NHL repeat; PHD, plant 
homodomain; ARF, ADP ribosylation factor; and Ig, immunoglobulin family. The three- 
dimensional structural representations of the three domains are shown next to the schematic 
representation. B) The consensus sequences for the RING domain and the two types of B- 
box domain (B-boxl and B-box2) are shown: C, cysteine; X , any amino acid; H, histidine; 
D, aspartic acid; E, glutamic acid. Adapted from [8, 15].
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Figure 1.2. The Tripartite motif (TRIM) family of proteins.
All the TRIM proteins described in humans and mouse to date are represented schematically 
with their conserved domains. The TRIM proteins are subdivided by their homology 
domains in the C-terminal region of the protein. R, RING domain; B, B-box domain; CC, 
Coiled-coil domain; BROMO, bromodomain; MATH, meprin and TRAF homology domain; 
NHL, NHL repeat; PHD, plant homodomain; p, predicted from computational analysis. The 
TRIMs not found in humans or mice are indicated. Adapted from [22].
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Figure 1.3. Schematic representation of The B30.2 domain structure and function.
A) The B30.2, a domain of about 200 amino acids, is composed of PRY and SPRY motifs.
B) Table of the different families of proteins containing B30.2 or SPRY domains and their 
possible functions. C) Schematic representation of the mutations found in the B30.2 domains 
of TRIM5ot, TRIM20 and TRIM18. Mutations are indicated by the light blue arrows. One 
mutation in the B30.2 domain of human TRIM5a results in restriction activity to HIV-1. 
Mutations in the B30.2 domain of TRIM20 are associated with Mediterranean fever 
(MEFV). Mutations in the B30.2 domain of TRIM18/MID1 are associated with Optiz 
G/BBB syndrome. Adapted from [26, 265].
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Figure 1.4. Model of TRIM-mediated protein ubiquitination and proposed molecular 
functions of TRIMs.
A) Ubiquitin transfer from TRIM proteins to the substrate. The RING domain (depicted in 
red) binds to the E2 ubiquitin ligase carrying ubiquitin (shown as a green triangle). The 13- 
box domain (depicted in blue) of the TRIM proteins interacts directly with a substrate 
protein (S). Then ubiquitin is transferred to a lysine residue in the substrate (depicted with an 
arrow). B) The many diverse functions of TRIM proteins. Summary of the TRIMs known or 
suggested to have a specific function. TRIMs with a possible link to immune function are 
shown in red. Adapted from [8].
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Figure 1.5. Cells of the innate and adaptive immune system (used in our study) produce 
different patterns of cytokines upon stimulation and have different effector functions.
Plasmacytoid DC (pDC), Macrophages (MAC), and mDC are activated by pathogen-derived 
products to produce different sets of cytokines, important for initiation of the adaptive 
immune response. MHCII bound to peptide and co-stimulatory molecules, like B7, on the 
cell surface of DCs interacts with the TCR and CD28 on naive CD4 T cells. Nai've CD4+ T 
cells producing IL-2 can differentiate into Thl and Th2 populations distinguished by the 
cytokine profiles shown, and mediating protective responses against intracellular pathogens 
or helminth infections respectively. Neutral T cells producing IL-2 and TNF can also be 
derived in vitro. ILIO-Tregs producing large amounts of the immunosuppressive cytokine 
IL-10 can also develop. The IL-10 cytokine is also produced by Thl, Th2, and macrophages, 
B cells and DC (but not pDC), and inhibits the differentiation and function of all these cell 
subsets. CD25 Tregs which also have inhibitory functions do not produce cytokines in vitro 
upon TCR stimulation.
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Figure 1.6. Overview of the Toll like receptors (TLRs) and their differential expression 
in macrophages and DC subsets.
Expression of the different TLRs on their specific cell subset and their TLR ligands are 
indicated. MyD88 (myeloid differentiation primary-response gene 88) is the key signalling 
adaptor for all TLRs, with the exception of TLR3 and TLR4. TLR3 signals instead through 
the TRIF (Toll/IL-IR [TIR]-domain-containing adaptor protein inducing IFN|3) adaptor 
molecule. TLR4 is the only TLR to signal through four adaptor proteins: MyD88, TRIF, 
MAL (MyD88 adaptor-like protein) and TRAM (TRIF-related adaptor molecule). IL-1R and 
IL-18R also signal through MyD88. TLR1,2,6 recognize lipopeptides from bacteria or the 
synthetic lipopeptide Pam3Cys. TLR4 binds lipopolysaccharides (LPS) from gram negative 
bacteria. TLR5 binds flagellin from bacterial flagella. TLR3 binds to double stranded RNA 
(dsRNA), TLR7,8 recognize single stranded RNA (ssRNA) from viruses. TLR9 binds 
unmethylated CpG DNA.TLR1,2,4,5,6 and the IL-1, IL-18 receptors (IL-1R, IL18-R) are 
expressed in on the cell membrane while TLR3,7,8,9 are expressed in endosomes.
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Figure 1.7. Viral products activate cell-specific pathways to induce type-I IFNs and 
IFN-dependent expression of anti-viral proteins.
A) Signalling pathways in macrophages and mDC to induce type-I IFNs and pro- 
inflammatory cytokines. B) Signalling pathways in pDC to induce type-I IFNs and pro- 
inflammatory cytokines. C) Type-I IFN signalling and establishment of an anti-viral state. 
Binding of type-I IFNs to their receptor (IFNAR1) leads to recruitment and activation of 
JAK1 and Tyk2 resulting in phosphorylation of STAT2 and STAT1 to form a STAT1- 
STAT2-IRF9 complex, which is known as ISGF3 (IFN-stimulated gene (ISG) factor 3) 
complex. These complexes translocate to the nucleus and bind IFN-stimulated response 
elements (ISREs) in DNA to initiate gene transcription. Importantly, this ISGF3 complex is 
the only complex that can bind specifically the ISREs in the promoters of certain IFN 
sensitive genes (ISG) to initiate their transcription. These genes can then induce an “anti­
viral state” in cells exposed to IFNa/(3 by up-regulation the protein kinase R (PKR) which is 
activated by dsRNA and prevents transcription by the transcriptional initiation factor 2 
(eIF2a), the 2’5’-oligoadenylate sinthetase (OAS) which degrade cellular and viral RNA, the 
Mx family o f proteins which are GTPases that can act by recognizing nucleocapsid structures 
from some viruses, and potentially anti-viral TRIMs.
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Figure 1.8. An overview of the TRIM proteins involved in immune signalling and anti­
viral functions.
TRIMs in ubiquitination pathways: TRIM25 ubiquitinates RIG-I which is required for 
MAVS binding as well as the ability of RIG-I to induce IFNp. TRIM21 involved in 
signalling to induce IL-12p40 production by non-proteolytic mechanism of ubiquitination of 
IRF-8 in macrophages stimulated with IFNy and CpG. TRIM21 can act as a negative 
regulator of IFNp by inducing IRF-3 ubiquitination and degradation. TRIM 18 is a target of 
MAPK phosphorylation which leads to regulation of microtubule dynamics by association 
with the catalytic subunit of protein phosphatase 2A and targets it for ubiquitin-dependent 
degradation.. Non-ubiquitination pathways: TRIM27 which can be phosphorylated by 
IKKa,p,e and TBK-1, inhibits NF-kB and/or ISRE activation mediated by these IKKs. 
Phosphorylation of TRIM27 leads to IRF-3 retention in the cytoplasm negatively regulating 
signalling. TRIM30 interacts with the TAB2-TAB3-TAK1 adaptor-kinase complex and 
degrades TAB2-TAB3 to inhibit production of IL-6 and TNF. TRIM8/GERP interacts with 
SOCS-1 and decreases its ability to inhibit IFNy-induced JAK-STAT activation. In TGFP 
signalling: TRIM33 interacts with phosphorylated Smad2/3 and results in induction of 
erythroid differentiation. Cytoplasmic TRIM 19 (cPML) binds to Smad2/3 and SARA for 
signalling of TGFp. TRIM20 modulates caspase-1 and IL-1P activation. TRIM45 inhibits 
transcriptional activity of AP-1 and ELK-1 probably used by some viruses for transcription 
of viral genes. TRIM 14 inhibits the transcriptional activity of PU.l. Anti-viral TRIMs: 
Replication of MLV is restricted in embryonic stem cells where TRIM28 forms a complex 
with histone methyltransferases, histone deacetylase and HP1 family members to methylate 
histone HI and promote chromatin condensation. TRIM32 interact with the transactivation of 
transcription (Tat) protein of HIV-1, HIV-2 and EIAV and may inhibit transcription of viral 
genes. TRIM22 may inhibit HIV-1 virus by downregulating HIV-1 Long terminal repeat 
(LTR)-directed transcription. TRIM5a blocks HIV-1 replication at the stage of early entry to 
the cells before reverse transcription, while TRIM1 blocks N-MLV possibly at the same 
stage.
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2. Materials and Methods

2.1. Mice

129Sv/Ev WT, IFNa/p R knockout mice, BALB/c and C57BL/6, MyD8 8 - 

deflcient, and TRIF-deficient mice were used to provide macrophages, mDCs and/or 

pDC. BALB/c mice were used to obtain the CD4+T cells subsets for expression 

profiling. 129 Sv/Ev and IFNa/p R knockout mice were purchased from B&K 

Universal Ltd. All mice were bred at the National Institute for Medical Research 

(London, U.K.) and housed under specific pathogen-free conditions and following 

UK home office regulations. Female mice were used between 8  and 12 weeks of age. 

Mice were given irradiated food and water ad libitum.

2.2. Reagents

Culture medium (cRPMI) was RPMI 1640 (BioWhittaker) with 5% heat- 

inactivated fetal calf serum (FCS)(Labtech International), 0.05 mM 2-p- 

mercaptoethanol (Sigma), 10 mM HEPES (BioWhittaker), 100 U/ml penicillin 

(BioWhittaker), 100 pg/ml streptomycin (BioWhittaker), 2 mM L-glutamine 

(Sigma), and 1 mM sodium pyruvate. DC and macrophages were stimulated with 

Salmonella minnesota LPS (Alexis), poly (I:C) (Invivogen Life Technologies), 

phosphorothioate CpG DNA class B (CpG1018; 5’-TGACTGTGAACGTTCGAGA) 

(Invitrogen Life Technologies) or Influenza A virus strains A/Puerto 

Rico/8/34(HlNl) (PR8 ), and A/New Caledonia/20/99(H1N1) (CAL), grown at 

NIMR. Flt3 ligand was from Shangai Genomix (Shangai, China). Mouse GM-CSF



was obtained from Schering Plough. Monoclonal Antibodies (mAbs) used for 

isolation of DC subsets were anti-B220-FITC, anti-CD llc-PE, anti-CDllb- 

allophycocyanin (APC) (all BD Pharmingen or eBioscience). mAbs used in cultures 

for differentiation of T cell subsets were anti-IFNy (XMG1.1) and anti-IL-4 (clone 

11B11). Anti-mouse CD3 (clone 2C11) and CD28 (clone 37.51) mAbs used for T 

cell stimulation were purchased from BD PharMingen. mAbs used for T cell 

enrichment were anti-B220 (clone RA3-6A2), anti-CD8  (clone C291.2.43), anti- 

Class I-Ad/I-Ed (clone 2G9), and for T cell isolation were anti-CD4-FITC, -PE or - 

CyChrome (clone RM4-5), anti-CD62L-PE (clone Mel-14), anti-CD45RB-FITC or - 

PE (clone C363.16A) and biotinylated anti-CD25 (clone 7D4) was followed by 

streptavidin (SA)-CyChrome or SA-APC, and isotype controls (all BD PharMingen). 

mAbs used for intracellular staining were anti-IL-2-FITC, -PE or APC (clone JES6 - 

5H4), anti-IL-4, PE (clone 11B1), anti-IL-5, PE (clone TRFK5), IFNy, FITC (clone 

XMG1.1) and anti-IL-10-PE or -APC (clone JES5-16E3), anti-TNF-a-PE or APC 

(clone MP6-XT22) and isotype controls (all BD PharMingen).

2.3. Isolation of T cell subsets and generation of polarized T cells

CD4+ T cells were enriched from total spleen cell suspensions and purified as 

CD4+CD62L+CD45RBhigh naive T cells (>98%), CD4+CD25+ Treg cells (>96%) 

using a MoFlo flow cytometer (DakoCytomation). Neutral (Th cells differentiated in 

the absence of polarizing cytokines and in the presence of anti-IL-4 and anti- IFNy), 

Thl, Th2 and IL-10-producing Treg cells (IL-10- Treg) were derived in vitro in an 

APC-independent manner, as described [260]; [258]. Briefly, spleens from female

63



BALB/c mice were aseptically removed, pooled and mashed using a plunger from a 

2ml syringe, through a 70-micron filter in the presence of cRPMI. The homogenized 

cells were treated with Ammonium Chloride, NH4 CI (0.83%) to remove red blood 

cells (RBC). The cells were washed and re-suspended in sort buffer (PBS, 5% FCS, 

100 U/ml penicillin, 100 pg/ml streptomycin). Cells were depleted of APCs and CD8  

T cells (anti-B220, anti-CD8 , anti-CD lib  [Mac-1]) at a final concentration of 

lOpg/ml, by using BioMag goat anti-rat IgG magnetic beads (PolySciences, Inc.) and 

a magnetic strip. Following magnetic bead depletion, enriched CD4+ T cells were 

washed twice and incubated with a mix of the appropriate antibodies for purification 

of naive CD4 T cells (CD4+CD62L+CD45RB+), or CD25 Tregs (CD4+, CD25+). 

Cells were incubated for 20 minutes at 4°C. Labelled cells were washed by 

centrifugation, passed through a 40-micron filter and purified by MoFlo cytometry. 

After purification, nai’ve CD4 T cells (CD4+CD62L+CD45RB+) or CD25 Tregs 

(CD4+CD25+), cells were plated in 24-well plates (lxlO 6 cells per well) and 

stimulated in an APC-free environment with plate-bound anti-CD3 (a-CD3) (10 

pg/ml) and soluble a-CD28 (2 pg/ml). For generation of neutral, Thl, Th2, and IL- 

lOTreg, nai've cells (CD4+CD62L+CD45RB+) were also plated in 24-well plates 

(lxlO6 cells per well) and stimulated in an APC-free environment with plate-bound 

anti-CD3 (a-CD3) (10 fig/ml) and soluble a-CD28 (2 |ag/ml) and their corresponding 

cytokine cocktail in cRPMI. Neutral cells were generated by addition of a-IL-4 (20 

pg/ml), a-IFNy (5 pg/ml). Thl cells were generated in the presence of IL-12 (5 

ng/ml) and a-IL-4 (20 pg/ml). Th2 cells were generated in the presence of IL-4 (10 

ng/ml) a-IFNy (5 pg/ml). IL-10-Treg were generated in the presence of vitamin D3 

(4x10"4 M), Dexamethasone (4x1 O'6 M) (Vit/Dex). Cells were grown in an incubator 

(37°C, 5% C02). On day 3, cells were split in a 1:3 dilution with their corresponding



cytokine cocktail into new 24-well plate in the absence of a-CD3 and a-CD28. On 

day 7, cells were collected and small fraction of the samples was stimulated for 

quality control with a-CD3 and a-CD28 for intracellular cytokine production by 

FACS, protein production by ELISA, and the rest of the cells were stimulated with 

a-CD3 and a-CD28 and samples collected at different time points for mRNA 

analysis by real time PCR. Figure 2.1 shows a flow chart representation of the 

experimental approach used in our study.

2.4. GeneChip: Analysis of TRIMs

The microarray experiments were previously performed by a PhD student in 

the lab (John Shoemaker, 2006; [266]). Therefore the description of the microarray 

methodology is fully explained in his thesis [266].

The analysis of TRIM expression was done in my study using the previously 

available raw data of the different CD4 T cell populations by microarray. The 

computational algorithm used was GC-RMA and the absolute values were processed 

with GeneSpringv7.0 software (Silicon Genetics) for further normalizations. The 

values obtained were normalized to the 50% median (log2 =1) from each GeneChip 

and these values were further normalized by the median of all samples for each gene. 

For data presentation, normalized expression was transformed to log2 scale (log2 =

1.0, being the median). Importantly, the Affymetrix GeneChip contains 11 specific 

probes, that span the full length transcript for each gene measured, making it possible 

to detect some of the transcript variants described for TRIM genes.
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2.5. Generation of Bone Marrow (BM)-derived macrophages

Bone marrow (BM)-derived macrophages were generated in the presence of 

L cell-conditioned medium containing M-CSF. BM cells were isolated by flushing 

femurs and tibia with culture medium (cRPMI containing 10% FCS). After 

centrifugation cells were RBC lysed as described above. Cells where then washed 

with cRPMI and plated at 0.5x106 cells/ml in Petri dishes (60mm, Barloworld 

Scientific; volume 8  ml). Plates were placed in a tissue culture incubator at 37°C in 

5% CO2 . At day 4, 10 ml of fresh L cell-conditioned medium were added and placed 

back in the incubator. At day 7, adherent cells were detached from plates by first 

removing the medium and adding ice-cold PBS. Plates were the placed in the fridge 

for 10-15 min. and cells harvested by gentle flushing. The purity was >95% 

macrophages as determined by staining cells for F4/80 by flow cytometry. The cells 

were then stimulated in 24-well plates as described in the in vitro stimulation of 

macrophages below.

2.6. Generation of Bone Marrow myeloid DC (mDC)

BM-derived CDllc+ myeloid DC (mDC) were generated in the presence of 

GM-CSF, as described previously [267]. BM cells were isolated by flushing femurs 

and tibia with cRPMI. Cells were centrifuged at 1300rpm for 5 minutes and RBC 

were lysed using 0.83% ammonium chloride (0.5ml/lxl07cells). BM cells were 

plated at 106 cells/ml in medium supplemented with 10 ng/ml GM-CSF in 6 -well 

plates in a volume of 5 ml. At days 2 and 4, supernatant containing non-adherent 

cells was removed, the wells were washed gently, and fresh medium containing GM-
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CSF (10 ng/ml) was added. At day 6 , non-adherent cells were collected, centrifuged, 

re-suspended in fresh medium with GM-CSF (10 ng/ml), and cultured overnight in 

petri dishes (Nunc). The purity was >60-70%.

2.7. Generation of splenic pDC subsets

For the purification of splenic pDC, spleens were treated for 30 min at 37bC 

with 0.4 mg/ml Liberase Cl (Boehringer Mannheim), followed by RBC lysis as 

above. Cells were maintained throughout the procedure in cold PBS, 5% FCS, and 

2.0 mM EDTA. Spleen cell suspensions were enriched for CDllc+ cells by 

AutoMACS using anti-CD 11c microbeads and staining at the same time with 

CDllc-PE, CD8 a-APC, and 120G8-Alexa488 for 20 min at 4C. Cells were then 

washed and enriched using an AutoMACS (Miltenyi Biotec) according to the 

manufacturer’s instructions to positively select the CD 11c cells. The positively 

selected fraction was then spun down and re-suspended in FACS buffer at 20x106 

cells/ml. The enriched DC were purified using a MoFlo cytometer 

(DakoCytomation) as the CDllc+CD 8 a+, CDllc+CD 8 a - ,  and the C D llcdull20G8+ 

pDC. The purity was consistently <95%. Figure 2.2A and 2.2B show the isolation 

and purification sorting profiles.

2.8. Generation of Bone Marrow plasmacytoid DC (pDC)

BM derived Plasmacytoid DC (pDC) were generated by culturing BM cells in 

culture medium containing 100 ng/ml Flt3 ligand for 10 days. BM cells were isolated
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from femurs and tibia as described above. Cells were RBC-lysed and cultured in 

medium containing 100 ng/ml Flt3 ligand for 10 days at 106 cells/ml in 6 -well plates 

in a volume of 5 ml. At day 5, 2.5 ml of medium was replaced by 2.5 ml of fresh 

medium containing Flt3 ligand. The resulting pDC were purified by flow cytometry 

as CD1 lc+CDl lb'B220+ using a MoFlo cytometer (DakoCytomation). In some cases 

the mDC population expressing CD1 lc+CDl lb+B220' was also collected in a 2-way 

sort for comparison with the pDC population. The purity was always >96%. Figure 

2.2C and 2.2D show the isolation and purification sorting profiles.

2.9. Flow cytometry analysis

Cell surface markers were analyzed to determine the purity of purified or 

enriched cell subsets. For macrophages and DC, cells were pre-treated for 10 min 

with anti-FCyll (anti-CD 16/CD32, clone 2.4G2) to block FC receptors and minimize 

non-specific binding. Staining was performed in FACS buffer (PBS containing 1% 

FCS, 100 U/ml penicillin and 100 pg/ml streptomycin) for 15 min on ice with the 

appropriate antibodies. Cells were then washed with FACS buffer and analyzed on a 

FACS Caliber flow cytometer (BD Bioscience). The Data was analyzed using 

FlowJo version 8  software.
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2.10. In vitro stimulation of DC and macrophages, and quantitation of 

cytokine production

0.25x106 mDC were cultured in 500 pi medium in 48-well flat-bottom culture 

plates (Nunc) and lxlO6 macrophages were cultured in 1 ml medium in 24-well flat- 

bottom culture plates. mDC and macrophages were stimulated with medium alone, 

LPS (100 ng/ml), poly(I:C) (50 pg/ml), CpG1018 DNA (0.5 pM) or Influenza virus 

PR8  (A/Puerto Rico/8/34-HlNl) and New Caledonia (A/New Caledonia/20/99- 

H1N1) at 100 hemagglutinin (HA) U/ml. For pDC, O.lxlO6 cells were cultured in 

200 pi medium in 96-well flat-bottom culture plates (Nunc) and stimulated with 

Influenza viruses and CpG as described above. After culture for 3, 6  and 24 hours, 

supernatants were collected, and the cytokine concentration was determined by 

immunoassay. Commercially available ELISA kits were used for the detection of IL- 

12p70, TNF, IL-10 (eBioscience; Ready-Set-Go) and IFNp (PBL supplier). IFNa 

was measured by a sandwich ELISA with an anti-IFNa capture mAb (FI8 ; Hycult), 

and a rabbit anti-IFNa polyclonal antibody (PBL supplier) followed by goat anti­

rabbit HRP (Sigma-Aldrich).

2.11. Real-time quantitative PCR

Different cell types were stimulated with the indicated stimuli for 0, 3, 6  and 

24 hours. RNA was extracted using RNeasy kit (Qiagen, Hilden, Germany) and 

reverse-transcribed using oligo dT12-18 (GE Bioscience), random hexamer primers 

(Promega) and Superscript II RNaseH- reverse transcriptase (Invitrogen) according 

to the manufacturer’s instructions. cDNA was analyzed for TRIM expression by real-
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time PCR. assay in a 7900 Sequence Detection System using primer/probes sets 

(Applied Biosystems). The primer/probes were selected to detect all possible 

isoforms of TRIMs used in this study. In some cases (TRIM2,9,19,35) we tested 

primer/probes to detect different isoforms however no significant difference was 

observed in expression patterns of TRIMs between different isoforms. The 

primer/probes used in this study as well as their target exon for PCR are shown in 

Table 2.1. TRIM cDNA was amplified with TaqMan Universal PCR Master mix 

(Applied Biosystems) and expression values were normalized to HPRT1 

(hypoxanthine phosphoribosyltransferase; Mm00446968_ml)(Applied Biosystems). 

TRIM mRNA expression for primer/probe pairs was normalized to the HPRT1 

threshold value (CT value), or ubiquitin was used to normalize cytokine gene 

expression. Relative expression for all genes was calculated by the following 

empirical equation in Microsoft Excel:

Relative expression= POWER(1.8,((Ct, housekeeping gene)-(Ct, gene of interest))) 

*  10 000

2.12. Generation of heat maps for data presentation

The cycle threshold (CT) value of each TRIM was normalized by the CT 

value of HPRT as house-keeping gene to obtain the relative value for each condition. 

These values were then imported to GeneSpring GX 7.3.1 (Agilent Technologies) 

application. The values of each sample for individual TRIMs were normalized to the 

median of all samples for each gene. For data presentation, a value of 1.0 represents 

the median and is shown in yellow whereas high expression (relative to the median 

of each gene) is shown in red and low expression is shown in green. Further details 

in Figure 3.7.



2.13. Statistical analysis

Data from multiple experiments were analyzed by comparison to a defined 

control value using Dunnett’s test. Analysis was performed using GraphPad Prism 

software (GraphPad). In defined cases, pair-wise comparison was by Student’s 

paired t test. Values ofp  < 0.05 were considered significant.

2.14. Infectious units of Influenza virus in MDCK cells

Influenza virus PR8  (A/Puerto Rico/8/34-HlNl) and New Caledonia (A/New 

Caledonia/20/99-HlNl), were titrated in the susceptible Madin Darby canine kidney 

(MDCK) cells to determine infectious particles for each virus strain. This method is 

based on quantifying the cytopathic effects of the virus to distinguish viable from 

non-viable cells. Alamar blue provides a measurement of metabolic activity in the 

cell which results in the chemical reduction of Alamar blue from the oxidized state 

(blue, non-fluorescent) to the reduced state (red, fluorescent). Adherent MDCK cells 

were grown in a flask in IMDM medium containing 5% FCS. When cells reached a 

confluent state, then cells were washed with PBS and Typsin-EDTA was added and 

incubated at 37°C until detached. Cells were washed once with IMDM and re­

suspended in a small volume for cell count. Cells were then adjusted to a density of 

lxlO5 cells/ml. Cells were plated (4 0 jli1 = 4 0 0 0  cells) in a 96-well plate with 50 pi of 

IMDM and 10 pi of virus in 1:10 serial dilutions starting with undiluted sample. 

Cells were incubated for 3 days at 37°C and then the medium was removed by 

flicking the plate, washed once with 100 pi of IMDM followed by addition of 100 pi 

per well of IMDM containing lx Alamar blue. The plates were transferred to an 

incubator at 37°C with 5% CO2 for 1-2 hr. Alamar blue stained plates were loaded
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into a Safire2 microplate reader (Tecan, Switzerland) and the fluorescence was 

measured with settings of 530 nm excitation and 590 nm emission wavelengths. The 

number of viral infectious units was expressed as tissue culture infectious dose 

(TCID50) titre according to the method of Reed-Muench as described in [268]. The 

TCID50 infectious unit were PR8  = 104 8 /ml and New Caledonia = 103 7/ml (see 

Figure 2.3). It is important to note that this protocol may not yield reliable values for 

virus titre. The protocol measured viable virus but probably only as a single cycle of 

infection and so the TCID50 value could not be interpreted as typical infectious units 

of virus. Inclusion of trypsin into the medium would have allowed multiple cycles of 

replication and more typical units of infectivity.

2.15. Phylogenetic analysis of TRIM proteins

The amino acid sequences of all mouse TRIM proteins reported up to date 

were obtained from the Mouse Genome Informatics database (62 TRIM proteins 

available in this database)(http://www.informatics.jax.org). Amino acid alignments 

of the full length protein sequence of all TRIMs were obtained using the online 

ClustalW server (http://www.ebi.ac.uk/clustalw) [269]. Phylogenetic analysis and 

neighbour joining bootstrap analysis was performed on the amino acid alignment 

using the NJplot setting (from http://www.informatics.iax.org) and 500 replications. 

The same analysis was performed with all TRIMs not used in this study. Because a 

high number of TRIM proteins contain the B30.2 domain and it has been suggested 

that these domain may be a hotspot for evolutionary selection [28], [216] [270], we 

repeated the analysis described above using the protein sequence of the RBCC motif 

without the B30.2 domain or any other c-terminal sequence to the RBCC motif.
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Gene Title assay ID chosen PCR location(exon) mouse chr
Trim1/mid2 Mm00449285_m 1 Exon 7-8 X

Trim2 Mm00453149 m l 
Mm01219623 m l 
Mm01219626_m1

Exon 1- 2 
Exon 10-11 

Exon 6-7

3

Trim3 Mm00803844_m1 Exon 8-9 7

TRIM6 Mm01273446_m1 7

Trim8 Mm004 74107_m 1 Exon 3-4 19

Trim9 Mm01256267_m1
Mm01256265_m1

Exon 1-2 
Exon12-13

12

Trim'll Mm01347817_m1 Exon 5-6 11

Trim12 Mm00844231_s1 Exon 2-2 7

Trim14 Mm01352552_m 1 Exon 3-4 4

Trim16 Mm00459724_m1 Exon3-4 11

Trim18/mid1 Mm00839791_m 1 Exon 6-7 X

Trim19/PML Mm00476969 m l 
Mm00476972_m1

Exon 1-2 
Exon 4-5

9

Trim20/Mefv Mm0040258_m 1 Exon 1-2 16

Trim21/Ro52 Mm00447364_m 1 Exon 5-6 7

Trim23 Mm00659668_m 1 Exon 9-10 13

Trim24 Mm01136963 ml Exon 17-18 6

Trim25/EFP Mm01304224_m1 Exon 3-4 11

Trim26 Mm00499696_m1 Exon 5-6 17

Trim27 Mm01136028 ml Exon 7-8 13

Trim28 Mm00495594_m 1 Exon 3-4 7

Trim30 Mm01274264_m1 Exon 5-6 7

Trim34 Mm00504218_m 1 Exon1-2 7
Trim35 Mm00504120 m l 

Mm01313806_m 1
Exon 1-2 
Exon5-6 14

Trim37 Mm01307054_m1 Exon 21-22 11

Trim39 Mm00452564_m 1 Exon 3-4 17

Trim44 Mm00522313_m1 Exon4-5 2

T rim45 Mm01304706_m1 Exon 3-4 3

Trim46 Mm01212757_m1 Exon 7-8 3

Trim59 Mm02527285_s 1 Exon 3-3 3

Trim65 Mm01252954_m1 Exon 1-2 11

Trim68 Mm01165530_m1 Exon 1-2 7

HPRT1 Mm00446968_m 1

Table 2.1. Primer-probes (Applied biosystems) and their PCR location used in this 
study
Pre-design ABI primer-probes were chosen based on: 1) TRIMs known to be expressed in 
mice, 2) TRIM expression profile in T cells by Affymetrix, 3) TRIM reported in the literature 
to have some function in response to viral infections or immune response, 4) Chromosomal 
location, sequence homology and subfamilies.
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Figure 2.1. Flow chart representation of the experimental approach used in this study.
A) Generation, stimulation and real time PCR analysis of macrophages and DC populations.
B) Generation, stimulation and real time PCR analysis of CD4 T cell subsets. C) Strategy 
used to generate Heat maps from real time PCR values for data presentation.
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Figure 2.2. Purification of splenic and plasmacytoid precursor DC (pDC) subsets by 
Flow cytometry and re-analysis
A) Purification of splenic DC subsets by Flow cytometry. An example of FACS sort profile. 
The populations selected for purification are indicated in boxes. B) A typical post-sort re­
analysis of the isolated CD8a+ DC, CD8a-DC and pDC populations. C) Purification of BM- 
FLT3L derived DC subsets by Flow cytometry. After 10 days cultured in FLT3L cells were 
purified by flow cytometry and an example of FACS sort profile of the selected populations 
is shown in boxes. D) A typical post-sort re-analysis of the isolated mDC (CD1 lb+) or pDC 
populations.
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Influenza virus titration in MDCK cells

Figure 2.3. Determination of Infectious units of Influenza virus in MDCK cells
Influenza virus PR8 (A/Puerto Rico/8/34-HlNl) and New Caledonia (A/New 
Caledonia/20/99-HlNl), were titrated in the susceptible Madin Darby canine kidney 
(MDCK) cell line. The viruses were added in serial 1:10 dilutions starting with the equivalent 
to 100 HA units. The number of viral infectious unites was expressed as tissue culture 
infectious dose (TCID50) titre according to the method of Reed-Muench as described in 
[268]. The TCID50 infectious unit were PR8 = 104 8 and Cal = 103 7.

It is important to note that this method does not give an accurate measurement 
of the typical viral infectious units since trypsin was not added to the medium and 
therefore viable virus is detected only as single cycle of infection.
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Chapter 3:

Results (I)

Development of strategies for expression profiling of TRIM 

family members in primary cells of the immune system
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Chapter 3: Results (I)

3.1. Background: strategy for the analysis of TRIM expression in primary 

cells of the immune system.

The conserved features of the tripartite motif, and the large number of 

molecules containing this domain structure, strongly suggest that this motif has a 

distinct and essential basic function. TRIMs have been shown to be involved in very 

diverse functions including anti-viral functions and regulation of cytokine signalling. 

This has led to the suggestion that the basic common function of TRIMs may be 

related to the innate immune system [22]. This also begs the question as to whether 

more TRIMs remain to be discovered with functions related to immunity. To obtain 

information which would help to design studies or strategies to address this question, 

we set up a system to study whether TRIMs are differentially expressed in different 

primary immune cell subsets and whether their expression may be induced and/or 

regulated by specific cytokines that they produce. To date, there are no studies 

addressing systematically the expression or the role of TRIMs in the immune system. 

Thus, we have chosen to follow a global systematic approach to study the TRIM 

family of proteins to gain information as to their expression and potential function in 

immune cells. Broad expression studies using primary cells that can be purified to 

homogeneity are useful because they provide information in a biological system that 

represents close to physiological conditions. To do this it was necessary to first 

develop adequate systems for data analysis to be able to handle the large amount of 

information generated in such expression studies as presented in this thesis. The 

different cells of the innate and adaptive immune system chosen for our study have 

different effector functions during immune responses partially due to the cytokines 

they produce, thus knowledge of TRIM expression in these cells may help to give
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information with respect to their regulation to subsequently study their potential 

functions.

3.1.1. TRIM expression by microarray analysis in CD4 T cell subsets

We studied six distinct primary CD4+ T cell populations (nai've CD4+ T cells, 

neutral (cultured with anti-IL-4 and anti-IFNy) , Thl, Th2, IL-10-Treg and 

CD25+Treg, which were described in section 1.5.2 and summarized in Figure 1.5) 

and produce different profiles of cytokines upon stimulation [266, 271]. Using 

previous data generated in our lab using an Affymetrix approach [266, 271], we now 

examined the expression profile of TRIMs in these six distinct primary CD4+ T cell 

populations. As shown in Figure 3.1, we detected differential expression of TRIMs 

in T cell effector subsets after 6  hours stimulation with anti-CD3/CD28 (through T 

cell receptor signalling)(Figure 3.1). Some TRIMs were specifically expressed in 

unstimulated cells while others were induced upon stimulation. Conversely, some 

TRIMs were down-regulated upon stimulation (Figure 3.1).

3.1.2. TRIM expression by real time PCR analysis in CD4 T cell subsets

To gain additional information on TRIM expression in CD4 T cells, we used 

real time-reverse-transcription PCR (RT-PCR) to examine TRIM expression in these 

CD4+T cell subsets. To first ensure that analysis of TRIM expression would give 

comparable results to the data obtained by microarray, we obtained pre-designed 

primer-probes for RT-PCR, selected based on the data obtained by microarray

analysis. Selected TRIMs that showed detectable differential expression in these cell
0

subsets by microarray analysis are shown in Figure 3.2A. Expression analysis of 

these TRIMs by RT-PCR (Figure 3.2B) correlated for the most part with the
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expression profile by microarray analysis, and confirmed that these TRIMs were 

selectively expressed in these cell subsets. TRIM21,14,26,39 showed high expression 

in unstimulated nai've CD4 T cells and CD25Tregs by microarray analysis (Figure 

3.2A), and the expression of TRIM21,14,26 but not TRIM39 was down-regulated 

upon stimulation (Figure 3.2A, B), although down-regulation of TRIM39 was more 

clearly shown by RT-PCR analysis (Figure 3.2B). Expression of TRIM1 was 

selectively up-regulated only in Th2 and IL-lOTreg upon stimulation as shown by 

microarray analysis and RT-PCR (Figure 3.2A, B). As it has been previously 

reported, Th2 cells produce high levels of the cytokines IL-4, IL-5, IL-10, and IL-13, 

but IL-lOTreg only produce high levels of IL-10 [271], suggesting a possible 

correlation of IL-10 expression with TRIM! expression in these cells. TRIM 16 and 

TRIM46 were expressed in unstimulated Th2 and IL-lOTreg and down-regulated 

upon stimulation as observed by both microarray and RT-PCR (Figure 3.2A, B). 

TRIM2, 9 were highly expressed in unstimulated IL-lOTreg as observed by 

microarray and RT-PCR and upon stimulation their down-regulation was observed 

by RT-PCR but not as clearly by microarray (Figure 3.2A, B). These data obtained 

by two different methodologies confirmed differential expression of distinct TRIMs 

in CD4+T cell subsets. Although both methodologies gave similar results, it appeared 

that the RT-PCR based method may show greater sensitivity and a greater ability to 

discern differential expression.

3.1.3. TRIM transcript variants

The Affymetrix GeneChip is designed to contain 11 specific probes that span 

the full length of the transcript for each gene measured. In the microarray 

experiments we found that, in some cases, different probes for a specific TRIM
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transcript appeared to give different results. This could be due to different 

sensitivities of the probe present in the GeneChip, or possibly due to differential 

expression of transcript variants in the same cell subset. Since some TRIM genes 

have been reported to encode transcript variants, we sought to examine if it is 

possible to detect differential expression of TRIM transcript variants in the T cell 

subsets by microarray and RT-PCR. Having established that RT-PCR provided 

consistent and comparable data to that obtained by microarray, with the additional 

advantage of higher sensitivity, we tested the possibility of differential expression of 

TRIM variants in these T cell subsets. For this, we selected some of the TRIMs 

whose expression was detected at different levels depending on the probe examined 

in the Affymetrix chip. For example, TRIM9 mRNA was detected at high levels by a 

probe in the Affymetrix chip for exon 10 of the TRIM9 gene in unstimulated IL- 

lOTreg and in stimulated IL-lOTreg and Th2 cells (Figure 3.3A). However, a probe 

spanning the exon 12-13 junction did not result in any detectable levels of TRIM9 in 

this unstimulated IL-lOTreg subset and only low levels were observed upon 

stimulation in Th2 cells but not in IL-lOTreg (Figure 3.3A), suggesting a possible 

differential expression of TRIM9 variants.

To test if this difference was due to real expression of different transcript 

variants, we obtained pre-designed primers-probes for RT-PCR specific for the same 

variants observed in the GeneChip. To achieve this, we first searched the Genebank 

database for reported sequences of mRNA variants for TRIM9, and found that the 

longest transcript variant is composed of 14 exons. This transcript variant can be 

detected with pre-design primers for RT-PCR specific for exon junctions 12-13, as 

well as with the same probe in the GeneChip (see Figure 3.3B for schematic 

representation). A shorter variant of TRIM9 containing only 10 exons has also been
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reported in the GeneBank database. Thus, this variant could potentially be recognized 

with the GeneChip probe for exon 10 as well as with a pre-designed primers-probe 

for RT-PCR specific for exon junctions 1-2 (Figure 3.3B).

Expression of TRIM9 variant 1 by RT-PCR in the different CD4+T cells 

subsets (at 0 and 6  hours) showed high levels of expression in unstimulated IL- 

lOTreg and a slight decrease upon stimulation, which correlated with the data 

obtained by microarray. Moreover, detectable levels of this variant were observed in 

Th2 cells upon stimulation, which also correlated with the expression pattern 

observed by microarray analysis (Figure 3.3C). However, high levels of TRIM9 

variant 2 were detected in IL-10 Tregs by RT-PCR whereas we were unable to detect 

any expression of this variant by microarray analysis (compare Figure 3.3A and C). 

Therefore, we could not confirm differences in the expression of TRIM transcript 

variants using these techniques. This is most probably due to the higher sensitivity 

obtained by RT-PCR. This indicates that the analysis of gene expression by these two 

technologies may some times give different data although it suggests that the RT- 

PCR approach may be more robust. Therefore, it is important to pay close attention 

when analysis data by microarray analysis.

Of note, because of differences in the sequences of each primer-probes and 

genes, and the different GC content found in each of these sequences which can 

affect the sensitivity of detection, it is only possible to compare different samples for 

the same gene but it is not possible to compare expression levels between different 

genes (i.e. comparing different primer-probes). We ensured that in future 

experiments we used RT-PCR primer-probes that detect all possible variants for each 

of the TRIMs reported in the Genebank database. In conclusion, RT-PCR offers a
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more reliable, sensitive technique although it is more demanding and time 

consuming. ,

3.1.4. Selection of primer-probes for TRIM analysis by real time PCR in 

immune cells

The data obtained by RT-PCR confirmed the differential expression of TRIMs 

in CD4+ T cell subsets (Figure 3.2), perhaps with greater sensitivity and precision, 

and revealed some TRIMs with interesting patterns of expression in these cell 

subsets. In addition, with the advantage of increased sensitivity and greater ability to 

discern differential expression (signal to noise ratio) by RT-PCR, we could obtain 

additional information with respect to TRIM gene expression that was not possible to 

observe by microarray analysis. We therefore expanded our study to include cells of 

the innate immune system, macrophages and DC, which also have different effector 

functions in part due to the cytokine profiles they produce. In addition we extended 

our study to examine additional TRIMs that may not have been detected by 

microarray analysis in T cells and selected additional TRIMs based on their reported 

putative functions in immunity and in anti-viral responses. We included here 

representative TRIMs from the different TRIM subfamilies and representatives 

located in clusters on different chromosomes (Figure 3.4). There are 62 mouse 

TRIMs described to date (mouse genome informatics website: 

http://www.informatics.jax.org) from which we chose 29 TRIMs that represent 

different subfamilies based on their domain composition and organization (shown 

with an asterisk on Figure 3.4, described in section 1.3 and shown in Figure 1.2; 

FN3, B30.2, PHD/BROMO, NHL, MATH, ARF domains) [22, 38]. Protein sequence 

homology and phylogenetic analysis of all mouse TRIMs revealed clusters or groups
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of TRIMs sharing high degree of homology that can be found on chromosome (chr) 

3, 7, 8 , 11, and chr-17 (Figure 3.4). This is in agreement with previous phylogenetic 

studies on human and primate TRIM protein sequences [272] and supports previous 

suggestions that the TRIM motif may have evolved by gene duplications from a 

common ancestral gene [272, 273].

With this broad selection of representative TRIM proteins chosen for our study 

we set out to established time points of peak of expression by RT-PCR for each 

TRIM gene in different CD4+T cell subsets, and in addition in macrophages and DC, 

as outlined below.

3.1.5. Kinetics of TRIM expression in CD4+Tcells, macrophages and DC

To further gain insight into the expression patterns of TRIM proteins in 

different cells of the immune system we included in our studied macrophages, mDC 

and pDC, known to produce different patterns of cytokines upon different stimulation 

(explained in the introduction, section 1.5.1.2). As part of the innate immune system, 

macrophages and DC have different effector functions in part due to the cytokines 

that they produce. DCs detect pathogens, process and present antigens to T cells, thus 

initiating the adaptive immune response [113, 114]. On the other hand, macrophages 

are important in the early stages of the innate immune response by producing 

cytokines and molecules such as Nitric oxide (NO) to kill pathogens [111]. Therefore 

we hypothesized that a comparison of TRIM mRNA expression between 

macrophages, DC and the different CD4+ T cell subsets may reveal differential 

expression of TRIMs, and consequently, may provide information to help design 

studies to delineate their functions during immune responses.
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We first performed kinetic experiments to determine the peak of TRIM 

expression by RT-PCR in the different cel T sub sets. For the differentiated CD4+ T 

cells described above and in the materials and methods, we collected samples at 

different time points after stimulations (0, 3, 6 and 24 hours) with anti-CD3/CD28 

and analyzed their expression profile by RT-PCR. We first ensured that these cell 

subsets produced the expected cytokine profiles. It is well known that Thl cells 

produce IFNy [116, 117], whereas Th2 cells produce IL-4, IL-5, IL-10 and IL-13 

[118, 119]. IL-lOTregs produce only high levels of IL-10, whereas naive cells 

produce IL-2 and cells grown in neutral conditions produce IL-2 and TNF [271]. As 

a quality control for the respective cells, we show the expected Thl hallmark 

cytokine IFNy or the immunoregulatory IL-10 (shown in Figure 3.5A) and the full 

description is in [271]. As expected, IFNy was exclusively produced by Thl cells and 

only very low level of expression Was observed in neutral T cells and IL-lOTregs. 

Conversely, IL-10 was highly expressed in Th2 and IL-lOTregs with only low levels 

in Thl cells (Figure 3.5A) confirming the purity and the effector signature expected 

of these cell populations. In terms of TRIM expression in these CD4+T cell subsets, 

most of the TRIMs that were up-regulated reached the peak of expression at 6 hours 

(Figure 3.5B) and this data confirmed the results obtained with the microarray 

experiment.

We then analyzed TRIM expression in macrophages and mDC stimulated at 

different time points after stimulation with LPS and CpG (ligands for TLR4 and 

TLR9 respectively). Additionally, pDC were stimulated with CpG and inactivated 

influenza virus (ligands for TLR9 and TLR7 respectively). These TLR ligands also 

induce different patterns of cytokine expression. Macrophages are known to produce 

high levels of IL-10 and TNF upon stimulation with CpG or LPS, but not IL-12p70
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[160]. Myeloid DC (mDC) also produce IL-10 and TNF upon CpG and LPS 

stimulation, and low levels of IL-12p70 [160]. pDC produce no detectable IL-10 

upon stimulation with CpG, but are known to produce high levels of type-I IFNs 

(including IFNa and IFN(3), IL-12p70 and TNF [160]. We first verified their 

cytokine profiles, and as an example mRNA expression of TNF and IL-10 is shown 

in Figure 3.5C. Notably, IL-10 was not expressed in pDC upon CpG and virus 

stimulation whereas significant induction of IL-10 mRNA was observed in 

macrophages and to a lesser extent in mDC upon CpG and LPS stimulation. 

Conversely, TNF was induced in all cell types with the highest levels achieved by 

pDC stimulated with CpG (Figure 3.5 C). To confirm the viability and purity of the 

pDC subsets we also measured IFNa protein by ELISA. Figure 3.5D shows that 

pDC are able to produce IFNa upon influenza virus or CpG stimulation confirming 

the known phenotype of these cells [274], whereas no IFNa was detected in 

macrophages and mDC.

In terms of TRIM expression, we observed that a large number of TRIMs 

were up-regulated in macrophages and mDC and the expression of most of them 

reached a peak at 24 hours (Figure 3.5E). Similarly, most of the TRIMs that show 

up-regulation of expression in pDC also reached a peak of expression at 24 hours 

(Figure 3.5F), suggesting a possible autocrine effect by cytokine signalling. To 

compare the relative mRNA expression of the TRIMs we had selected in the different 

cell types, we chose the peak of mRNA expression for T cells (6 hours), 

macrophages and DC (24 hours).
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3.1.6. Approach used for generation of colour heat maps of TRIM 

expression in T cells, macrophages and DC

Comparison of TRIM mRNA expression from RT-PCR analysed by standard 

techniques between the different cell types was complicated and difficult to interpret. 

Figure 3.6 shows the histograms of TRIM expression in the different cell subsets by 

individual TRIM genes. Although some differences could be observed in the 

expression levels of some TRIMs between cell types, the large amount of data 

obtained made it difficult to observe correlations and also made assimilation of data 

almost impossible. Complex and large data sets unmanageable by standard 

techniques can be readily assimilated by generation of heat maps that represent levels 

of expression. To better observe TRIM expression patterns and correlate groups of 

TRIM expression with cytokine production in the different cell subsets in a way that 

could be more readily assimilated, we generated heat maps to represent TRIM 

mRNA expression by importing the values obtained from RT-PCR to the GeneSpring 

software. The values of individual TRIM gene expression were normalized to the 

median of all samples for each gene. The median is shown in yellow; high expression 

relative to the median is shown in red and low expression in green. As examples, 

TRIM9 and TRIM65 expression values are represented by histograms and also 

translated to heat maps in Figure 3.7. This shows the values of TRIM mRNA 

detected at the peak of expression (6 hours for T cells and 24 hours for 

macrophages/DC - determined in the previous kinetic experiments). Analysis of the 

differential expression of TRIMs using this approach of colour heat maps will be 

shown and discussed in the next chapter.
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3.2. Discussion

Using microarray analysis we have shown differential expression of a number 

of TRIMs in six different CD4+T cell subsets that have different effector functions 

partly due to the different cytokine profiles they produce. We have also shown in this 

section that data of TRIM expression obtained by RT-PCR confirms the expression 

data obtained by microarray analysis, and this gives a level of confidence that the 

pre-designed primer probes chosen for PCR give reliable and reproducible results. In 

addition, using RT-PCR we were able to detect TRIM expression that was not 

observed by microarray analysis providing a more sensitive system for TRIM mRNA 

expression analysis and a greater ability to discern different levels of expression. This 

was highlighted by the fact that possible TRIM transcript variants were not detected 

by the use of specific probes in the GeneChip, while the same transcript was detected 

with the use of RT-PCR primer/probes (e.g. TRIM9, Figure 3.3). This is important, 

since many TRIM genes have been reported to express spliced transcript variants that 

may lead to TRIM isoforms. Moreover, some differences in isoform specific 

functions have been reported for some TRIMs [15]. Therefore, to obtain real 

information on gene expression and potential function of a gene we need to be able to 

account for all possible transcript variants. For our study we ensured that the primer- 

probes used for each TRIM gene recognize all possible transcript variants of a 

specific TRIM. Although this has the disadvantage of not being able to discriminate 

between transcript variants, it ensures detection of any possible variant for a gene and 

the study of TRIM variants was not an objective of this study. Another important 

aspect to take into account is the fact that primer-probes differ from one another in 

their sensitivity. Therefore PCR data obtained using different primers can not be



compared to each other since PCR amplification with different primers leads to 

different amplification efficiencies [275].

Having established an RT-PCR method to detect TRIM expression in immune 

cells we performed kinetics experiments of TRIM expression in the different T cell 

subsets, macrophages and DC and observed that, for the most part, expression of 

TRIMs that were up-regulated in T cells show an earlier peak of expression (6 hours) 

as compared to macrophages and DC (24 hours). Moreover, only a limited number of 

TRIMs showed up-regulation of expression in T cells and these TRIMs were 

different to the ones observed in macrophages/DC. This may suggest that the 

mechanism of induction of TRIM expression is different in T cells as compared to 

macrophages/DC, or could be explained by intrinsic differences between these cell 

types..:

Using the method of RT-PCR for analysis of mRNA at the peak time of 

expression (6 hours for T cells; 24 hours for macrophages/DC) we obtained a large 

and complex set of data which was unmanageable by ordinary histograms. Thus we 

designed an approach to deal with this large amount of information by generation of 

heat maps of expression using the GeneSpring software. We now examined TRIM 

expression in all these cell types (six CD4+T cell subsets, macrophages, mDC and 

pDC) and upon different appropriate stimulations (CD3/CD28 for T cells; LPS and 

CpG for macrophages/mDC; CpG and influenza virus for pDC) to compare TRIM 

expression and determined whether there was any correlation of these data with 

cytokine production. This will allow us to observe patterns of TRIM expression as 

will be shown in the next chapter.
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-TRIM Data analysis performed in this study (R. Rajsbaum).

Figure 3.1. Expression profile of TRIM proteins in CD4+ T cell populations by 
Microarray analysis.
A GeneChip profile for TRIM expression in unstimulated CD4+ T cells or upon 6 hr 
stimulation with anti-CD3/CD28 (TCR pathway). The different cell populations were 
isolated or derived in culture as described in materials and methods. The GeneChip image 
was analyzed with GeneSpring software with the GC-RMA algorithm and values were 
normalized per chip to the median value of all chips and further normalized by the median of 
all genes (log2). Green represents genes under-expressed as compared to the median value. 
White represents the median value and red represents over-expression to the median value. 
All preparation of the microarray was performed by John Shoemaker [266] and the TRIM 
data was analyzed by myself in this study.
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Figure 3.2. Real time PCR data correlates with microarray analysis of TRIM 
expression.
A) TRIM expression in different T cell subsets by microarray analysis. Selected TRIMs with 
high levels of expression are shown. B) Validation of TRIM mRNA expression in the 
different T cell subsets by reverse-transcription, real time PCR (RT-PCR). CD4+ T cells 
were either unstimulated (blue bars and - symbol) or stimulated for 6 hr with anti-CD3/CD28 
(red bars and + symbol) and the Relative values (RU) of TRIM expression normalized to 
HPRT are shown.
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Figure 3.3. TRIM transcript variants by microarray analysis and real time PCR.
A) TRIM expression in different T cell subsets by microarray analysis. The Affymetrix chip 
contains probes that bind to specific exons of the TRIM transcripts giving possible information 
on expression of transcript variants. The different exons recognized by the probe in the chip are 
shown. B) Schematic representation of 2 different transcript variants for TRIM9 reported in the 
GeneBank. The full length variant 1 contains 14 exons, whereas the shorter variant 2 contains 
only the first 10 exons. The regions recognized by either the Affymetrix probes or the real time 
PCR primer-probes are indicated. The primer probe for exon 1-2 by real time PCR, recognizes 
the same transcript variant as exon 10 by Affimetrix. The primer/probe for TRIM9 exon 12-13 by 
RT-PCR recognizes the same variant as TRIM9 exon 12-13 by microarray. C) TRIM mRNA 
expression of possible transcript variants expressed in the T cell subsets by real time PCR (RT- 
PCR). CD4+ T cells were either unstimulated (0) or stimulated for 6 hr with anti-CD3/CD28 (6) 
and the Relative values (RU) of TRIM expression normalized to HPRT are shown.
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chromosomes (chr) are indicated in circles. TRIMs used in our study are indicated with a 
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93



CD4+ T cells
IFNy

<  .E

I I
f l

Macrophages and mDC
IL10

s  0  I o l .  _
Naive

4 " !  “13
Neutral

c H o

Th1
1 4  4  4*12

Th2

c j ^

IL10

4 4 t
;D 2 5

Treg
<  .E

i f
^  O

01 3  25000!
E ~  20000!
_  ■§ 15000! 

^  10000!

n D n
j o  3 6 2-j 

N eutral I

[o| 316I2J

Th1

lo U le b i

Th2

U 3 6 2 |o  5 l |  

IL10 CD 25
Treg

<C =
’= 20000!

E 5  15000!

 ̂  ̂ 10000!
I— 01 5000!

Ol 3| 6I2I0I 3! 6I2I0I slazjolslelzjol 5111
Naive N eutral I Th1 I Th2 IIL10 lcD 29 

Treg

L3 CpG 
■ Influenza

0
C p G  l L P S  C p G  I L P S  C p G  I In fluenza  ^

T N F  «zLL

Macrophages and mDC

30 + C pG

VI21 MACTRIM 30
m D C +L P S

03 a)
TRIM

TRIM

19 +L PS

T RIM 20
M A C+LPS

21 MAC+CAL

B

Time (hr)
Kinetics of TRIM expression in Macrophages and mDC upon 
stimulation with LPS or CpG and in pDC upon stimulation with CpG or 
Influenza virus

CD4+ T cells
co

■</>(/>
2
CL

C  X  
CD <D€<

T3

U . E
1
OLt

Time (hr)
—  Kinetics of TRIM expression in Naive, 

Neutral, Th1, Th2,
IL-10Treg and CD25+Treg cells upon 
anti-CD3/CD28 stimulation

F pDC

TRIM 30-CA L

TRI WI30 +C pG  

iTRI i/119+CAL 
■TRI VI25 +CAL 
TRI i/120 +CAL 

|T R I i/114 +CAL 
[TRI VI34 +CAL

Time (hr)
_ _  Kinetics of TRIM expression in pDC upon 

stimulation with CpG or influenza virus

F igure 3.5. K inetics o f  cytok ine and T R IM  m R N A  expression  in C D 4+T  cells, m acrophages and  
DC populations by R eal tim e P C R  analysis.
A) C D 4+ T cell populations w ere stim ulated w ith anti-C D 3/C D 28 for the tim e indicated and m R N A  
expression o f  IFNy, IL10 and TN F w as determ ined by real-tim e PC R  using SY B R  green and ubiquitin 
as internal control (R U /ubiquitin). B) TRIM  expression in C D 4+Tcell w as determ ined in the sam e 
sam ples by R T- P C R  and norm alized  to H PR T  as internal control. T hese values w ere then norm alized 
to the unstim ulated sam ple to g ive Fold change in TR IM  expression. C ) M acrophages (M A C ) and 
m D C w ere treated  w ith C pG  o r L PS and pDC w ere treated  w ith  CpG  or inactivated influenza virus for 
the tim e indicated and m R N A  expression  o f  IL10 and TN F w as determ ined by R T -PC R  as described 
above. D) IF N a  pro tein  w as determ ined by ELISA  in the supernatants o f  pD C  treated  w ith CpG  or 
inactivated in fluenza v irus for the tim e indicated. E ) TRIM  expression in m acrophages and m D C and 
F ) pDC stim ulated and analyzed by R T -PC R  as described.

94



JBIM1

C£
CL
X
W
c3
4>>

a>a:

TRIM8 — TRIM44- TRIh 130 |

W l W i t e m !

TRIM45

:IM2 RIM9

TRIM11

TRIM 23 TRIM26 TRIM37

TR1M20

f\

m
TRIM27 TRIM39TRIM24

TRIM44TF4M25 „ TRIM28

WTf

-TRIM16 - TR1M46

TRIM18 TRIM59

Figure 3.6. Histograms of TRIM mRNA expression by real time PCR: difficult to 
interpret and observe correlations.
Different cell types were either unstimulated (in blue) or stimulated (in red) with anti- 
CD3/CD28 for CD4+T cells or LPS and CpG for macrophages, mDC or CpG and inactive 
influenza virus for pDC. RNA was extracted and reverse-transcribed as described in material 
and methods. cDNA was analyzed for TRIM expression by real time PCR assay using 
primer/probes sets. TRIM expression values were normalized to HPRT to give relative units 
of expression (RU/HPRT). Samples with significantly higher levels of expression are shown 
in boxes. Difficult to observe correlations, therefore heat maps were generated (see Figures 
3.7).

The reader is not expected to read the individual graphs. They are presented to show 
the difficulty of this type of graphical display.
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Figure 3.7. Approach to convert data to a comprehensible format by translating 
histograms of real time PCR to colour heat maps.
Different cell types were either unstimulated or stimulated with anti-CD3/CD28 for CD4+T 
cells or influenza virus PR/8, CAL and CpG for macrophages and DC. RNA was extracted 
and reverse-transcribed as described in material and methods. cDNA was analyzed for TRIM 
expression by real time PCR assay using primer/probes sets (Applied Biosystems-full list 
shown in materials Table). TRIM expression values were normalized to HPRT using the 
comparative method to obtain the relative value for each condition (RU/HPRT). Heat maps 
were generated by importing the relative values of TRIM expression to GeneSpring GX 7.3.1 
software. The values of each sample for individual TRIMs were further normalized to the 
median of all samples for each gene. The median is shown in yellow whereas high 
expression (relative to the median of each gene) is shown in red and low expression is shown 
in green. A typical example of a histogram with low (but detectable) and high relative values 
represented as a colour heat map for TRIM65 is shown in panel A. In two exceptional cases 
(TRIM20 and TRIM9) (as an example TRIM9 is shown in Panel B) more than half of the 
samples did not yield detectable product for TRIM9; it was therefore not possible to obtain a 
median value. In these particular cases, an arbitrary number of 500 was chosen as a median 
to normalize to the rest of the conditions. This number was chosen based on the detection 
limit of the real time PCR (approximate PCR threshold value [CT] of 35 is equivalent to 500 
relative units).
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Chapter 4 

Results (II):

TRIMs are differentially expressed in CD4+T cells, 

macrophages and DC
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4.1. TRIMs are differentially expressed in CD4+T cells, macrophages and

DC

Having established conditions for analysis of TRIM expression by RT-PCR 

and complex data mining, we determined the expression of TRIMs in our panel of 

CD4+ T cells upon TCR activation ( 6  hr after stimulation) and compare this 

expression to the one obtained in macrophages and DC stimulated with TLR ligands 

(24 hr after stimulation). To investigate further the possible effect on TRIM 

expression during viral infections, we also expanded our analysis and included here 

infections of macrophages and DC with 2 different live influenza viruses A/Puerto 

Rico/8/34 (PR/8 ), and A/New Caledonia/20/99 (CAL) as well as stimulation with 

CpG.

Grouping of TRIMs by patterns of mRNA expression identified four different 

clusters of TRIMs (Fig. 4.1A, C-l to C-4). TRIMs in cluster-1 (Figure 4.1A, C-l) 

(TRIM9, 1,18, 46, 16) showed high expression in CD4+T cells with much lower to 

undetectable levels in macrophages and DC. TRIM9 showed a unique pattern of 

expression in resting IL-lOTreg that was not further up-regulated after TCR 

triggering; however up-regulation was only observed in Th2 cells suggesting that its 

expression may not be attributable to cytokines produced by the different cells after 

activation. On the other hand, TRIM1 expression was up-regulated in IL-10 

producing T cells upon stimulation (Th2 and IL-10 Treg) (Fig. 4.1, C-l) and less so 

in Thl cells which produce lower amounts of IL-10 upon stimulation, suggesting a 

correlation with the IL-10 mRNA expression profile in these different effector T cell 

subsets (Figure 4.1B and 4.1C). However TRIM1 expression was also induced upon 

stimulation of CD25+Treg, which although they have the capacity to produce IL-10 

during in vivo inflammatory conditions, do not produce IL-10 subsequent to in vitro
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stimulation. Strikingly, the COS-FN3 domain was contained only in TRIMs in C-l 

(Fig. 4.1 A, TRIM9, 1,18, 46) and not in TRIMs in clusters 2- 4, suggesting that the 

COS-FN3 domains may provide these TRIMs with specific characteristics which co- 

ordinately regulate functions in CD4 T cells. Although TRIM 16 was also 

preferentially expressed in CD4+T cells, this TRIM does not possess a RING domain 

suggesting that its regulation of expression in T cells may differ from the COS-FN3 

containing TRIMs.

A distinct group of TRIMs shown in clusters 2 and 3 (Fig. 4.1 A, C-2 and C-3) 

was most highly expressed in macrophages and DC (TRIM2, 6 , 3, 20, 35, 25, 14, 45, 

19, 23, 21, 30, 26, 34, 8 ), and these TRIMs were further up-regulated in response to 

influenza virus infection. However, this group of TRIMs (C-2 and C-3) was further 

subdivided since a number of TRIMs were additionally expressed in naive CD4+T 

cells and CD25+Tregs (Fig. 4.1A, C-3, TRIM14, 45, 19, 23, 21, 30, 26, 34, 8 ) but did 

not show an increase in expression in T cells upon stimulation. Of note, expression of 

TRIMs in C-2 and C-3, was especially high under conditions which induced the 

highest levels of type-I IFNs (further investigated in the next chapter). However, 

expression of TRIM 2 and 6  was restricted to macrophages and mDC and low to 

undetectable in pDC, even upon stimulation.

Cluster 4 comprised a group of TRIMs (TRIM24, 27, 28, 37, 39, 65, 6 8 , 44, 

59) which was expressed in pDC at high levels prior to stimulation, and for the most 

part their expression was either down-regulated or not affected upon stimulation. 

Only low levels of expression of these TRIMs were seen in macrophages and mDC 

(Fig. 4.1 A, C-4) in the presence or absence of stimulation. Thus macrophages, mDC 

and pDC appear to have different intrinsic capacities to express particular TRIMs, 

regardless of the cytokines produced upon stimulation with microbes such as viruses
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and their products. This cluster of TRIMs (Fig. 4.1 A, C-4) was also expressed 

constitutively in naive and CD25+Tregs.

B30.2 domains are present in members of the TRIM family, in addition to 

other molecules of diverse function and play a major role in protein-protein 

interactions (previously discussed in section 1.3.1, [26]. Furthermore, a group of 

TRIMs containing B30.2 domains have been suggested to have evolved to restrict 

viral infection [270]. We show here that TRIMs containing the B30.2 domain 

organization are not restricted to any particular cluster of expression, but are spread 

throughout Cl -  C4 inclusively (Fig. 4.1 A, solid circles). These findings support 

previous reports that B30.2 domains are responsible for a broad set of cellular 

functions in addition to anti-viral restriction [26].

In summary, TRIMs that possess a COS-FN3 motif are highly expressed in T 

cells with little to no expression in macrophages and DC (C-l). Another group of 

TRIMs were expressed in macrophages and DC and up-regulated by viral infection 

and CpG (C-2 and C-3). These TRIMs were further divided based on additional 

expression in CD4+ T cells (C-3). Finally, a distinct cluster of TRIMs (C-4) was 

expressed constitutively at a high level in pDC with very low expression in mDC and 

macrophages, and expression of these TRIMs was not further up-regulated by 

viruses.

4.2. Discussion

Using heat maps for analysis and presentation of a large set of data we have 

defined four clusters of TRIM molecules on the basis of their distinct expression in 

either CD4+ T cells or macrophages and DC, which have different innate and 

adaptive immune functions to an extent determined by their cytokine profile. A group
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of TRIM (C-l) genes was preferentially expressed in CD4+ T cells and exclusively 

contained the COS-FN3 motif associated with protein-protein interactions. 

Additional clusters of TRIMs were defined on the basis of their up-regulation by 

influenza viruses in macrophages and DC. This group was subdivided (C-2 and C-3) 

since some TRIMs were also expressed in naive T cells and CD25Treg (C-3). 

Conversely, a distinct group of TRIM genes was constitutively expressed in pDC (C- 

4). The fact that TRIMs could be grouped based on their levels of expression, 

suggests that there may be similar mechanisms of regulation of expression for these 

TRIMs. Moreover, the generation of heat maps and the definition of these clusters of 

expression will allow us to observe correlations with cytokine production (next 

chapter).

4.2.1. TRIM expression in T cells

Using two different expression profile methodologies (microarray analysis 

and real time PCR) and a computational approach to identify clusters of TRIM 

expression in primary immune cells we show for the first time a group of TRIMs 

(TRIM1, 9, 18, 46, 16) which are highly expressed in CD4+ T cells. TRIM 1, TRIM9, 

TRIM18 and TRIM46 were highly expressed in CD4+ T cells, but less so or not at all 

in macrophages and DC (Figure 4.1), and exclusively contained the COS-FN3 motif 

which has been reported to bind microtubules [38]. Thus, our findings suggest that 

TRIM18, which has also been implicated in signalling pathways [276, 277], may be 

involved in immune function in addition to its previously reported role in 

microtubule dynamics in the context of the development of the ventral midline [106] . 

TRIM 18 can form a large complex of proteins involved in the regulation of 

microtubules dynamics [106], and has been shown to be involved in the MAP kinase
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p38- MEK1/2 signalling pathway [276. 277]. Similar to TRIM 18, the function of 

TRIM9, since it is highly expressed in activated Th2 cells and in IL-10 Treg (Figure 

4.1A), may not be restricted to its reported role in the central nervous system [278]. 

Based on our findings that the COS-FN3 domain was only found in TRIMs 

expressed in T cells, it is of interest to speculate that TRIM containing this motif may 

have similar signalling functions in T cells. Moreover, based on these findings it 

could be predicted that TRIM36, 67 (not done in this study) which also posses the 

RBCC-COS-FN3-B30.2 domain arrangement may be highly expressed in CD4+T 

cells. We also found TRIM 16 (also known as the estrogen-responsive B box protein) 

to be highly expressed in CD4+Tcells and further up-regulated upon TCR stimulation 

in Th2 cells. However, TRIM 16 does not contain the COS-FN3 domain organization 

suggesting that its role in T cells is different to the rest of TRIMs in C-l. Previous 

reports suggested that TRIM 16 expression is important for keratinocyte 

differentiation [279]; however our data suggests that since TRIM 16 is highly 

expressed in T cells its function may not be restricted to keratinocytes.

Human TRIM1 has been shown to inhibit N-tropic murine MLV [229]. Our 

findings that mouse TRIM1 is mainly expressed in CD4+ T cells and not 

macrophages and DC suggests that it may act as a restriction factor specifically in T 

cells, perhaps explaining the relative increased resistance of T cells to retroviral 

infection [280, 281]. Alternatively, our data may indicate that TRIM 1 may have 

additional functions to anti-viral activities.

TRIMs in cluster C-3 were distinguished from those in C-2, since they were 

also expressed in certain CD4+ T cell subsets, albeit to a much lower extent (Fig. 

4.1). In keeping with our findings TRIM8  and TRIM21, which we show here, fall in 

cluster C-3, have been previously shown to be expressed in T cells. Although it was
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suggested that these TRIMs may be specifically involved in signalling pathways 

required for IFNy and IL-2 production [200, 264, 282, 283], their high level 

expression in macrophages and DC, which do not produce IL-2 or IFNy under these 

conditions, suggest that these TRIMs may have a broader function and may be 

important in innate immune responses.

4.2.2. TRIMs preferentially expressed in macrophages and DC

We additionally define two clusters of TRIM expression (cluster 2 and 3) 

based on their preferential expression in macrophages and DC upon infection with 

influenza virus. These TRIMs further showed more specific patterns of expression. 

TRIMs in C-2 showed very low to undetectable levels of expression in CD4+ T cells. 

However TR1M6 and TRIM2 were also not detected in pDC even upon stimulation, 

therefore these TRIMs may play specific roles in macrophages and mDC. 

Interestingly, TRIM2 and TRIM3 were both expressed in macrophages and mDC, in 

contrast with previous studies where TRIM2 and TRIM3 were predominantly 

expressed in brain tissues [284, 285] indicating that these TRIMs are not restricted to 

the brain and may play important roles in innate immunity. In agreement with 

previous reports we observed TRIM20, 35 to be preferentially expressed in 

macrophages and DC [100, 286]; however we found that this expression can be 

further up-regulated upon influenza virus infection.

Another TRIM worth mentioning here is TRIM 19, which previous studies 

have shown to be important in terminal myeloid differentiation [66]. TRIM 19 

expression seems to vary depending on the cell type or the tissue studied [31], 

however the common feature of TRIM 19 expression seems to be the capacity to be 

induced by type-I IFNs and IFNy [225]. Consequently, it is not surprising that we
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find TRIM 19 expression highly increased in macrophages and DC upon stimulations 

that result in type-f IFN production. Moreover, the fact that pDC express such high 

levels of TRIM 19 already in unstimulated conditions may be due to low constitutive 

production of type-I IFNs by these cells. Surprisingly, we found that TRIM19 is not 

significantly up-regulated in Thl cells which produce large amounts of IFNy, 

suggesting that the responsiveness to IFNs varies depending on the cell type studied 

or that it is the unique signalling through the type-I IFNR that results in its up- 

regulation. This highlights the importance of our study using different primary cell 

subsets.

Interestingly, we found a group of TRIMs that are constitutively expressed in 

pDC (C-4) and their expression is not augmented upon viral infection. Our 

Observations that this cluster C-4 Of TRIM genes is also expressed in T cells, may 

reflect the close relationship suggested between pDC and lymphoid cells from 

observations that pDC express a number of markers of the lymphoid lineage and the 

possibility of a common haemopoietic precursor [287].

We show that TRIM genes containing a B30.2 domain are not confined to a 

particular cluster defined by their expression and/or up-regulation by viral infection, 

in line with a broad function of B30.2 domains in protein-protein interactions. 

Indeed, the B30.2 domain can be found in proteins that belong to ten different 

families additional to the TRIM family, some of which have been shown to play a 

role in signalling in immune cells and proposed to have been selected as a component 

of immune defence [26].

Since the expression of a large number of TRIMs was induced upon influenza 

virus infection in macrophages and DC, this suggested a mechanism of co-regulation 

of gene expression. Having established an interpretable method for visualization with
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heat maps, this may allow us to readily correlate TRIM expression with cytokine 

production and will be the focus of the next Chapter.
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Figure 4.1. TRIM are differentially expressed in resting and stimulated CD4+ T cells, 
macrophages and DC.
A) TRIM mRNA expression was analyzed by real-time PCR in CD4+ T cells either 
unstimulated (-) or stimulated with anti-CD3/CD28 (+) for 6 h, and macrophages (MAC), 
mDC and pDC either unstimulated (-) or stimulated with influenza virus PR/8 or CAL and 
CpG for 24 h. A heat map was generated by normalizing the values of each sample to the 
median of all samples for each gene (as explained in Figure 3.7); green: low expression; 
yellow: median value; red: high expression. Genes were clustered by levels of expression: 
TRIM genes preferentially expressed in CD4+ T cells (C-l); TRIM genes preferentially 
expressed in macrophages and DC and up-regulated upon influenza infection (C-2 and C-3); 
and TRIM genes constitutively expressed at high levels in pDC (C-4). TRIM genes indicated 
with solid circles contain a B30.2 domain. B) Kinetics of TRIM1/MID2 mRNA expression in 
the different T cell subsets upon TCR stimulation, by RT-PCR. C) Kinetics of IL-10 mRNA 
expression in the different cell subsets upon TCR stimulation, by RT-PCR. Note that TRIM1 
expression correlates with IL-10 expression in the different cell types.
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Mechanism of regulation of TRIM expression
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5.1. Mechanism of regulation of TRIM expression in DCs and

macrophages.

In the previous chapter we showed the differential expression of TRIMs in 

primary cells subsets of the innate and adaptive immune system that produce 

different cytokine profiles. We showed 15 TRIMs (Clusters C-2 and C-3) that are 

preferentially expressed in macrophages and DCs and further up-regulated upon 

infection with influenza virus. This is of interest because only 7 of these TRIMs have 

been previously reported to be up-regulated by cytokines or viral infection and very 

few studies have addressed TRIM expression in primary cells. Those TRIMs that had 

been previously shown to be induced in epithelial, lymphoid or other cell lines when 

type-I or type-II IFNs were added to the cell culture include TRIM8 /GERP, 

TRIM 1 WML, TRIM20/MEFV, TRIM21/Ro52, TRIM25/EFP, TRIM30/RPT-1, 

TRIM34/IFP-1 [200, 218, 224, 282, 288-290]. However, a requirement for type-I 

IFNs or any other cytokine during viral infections has not been addressed. Moreover, 

the fact that expression of many TRIMs appeared to be co-regulated during influenza 

virus infection, makes it tempting to speculate that these TRIMs have common roles 

during immune responses to viruses and should be tested in future studies. Our 

experimental system of analysis of TRIM expression in primary cell subsets of the 

innate immune system which naturally produce different pattern of cytokines upon 

viral infection or TLR stimulation allowed us now to address the possible mechanism 

of regulation of TRIM expression. We started by searching for possible correlations 

of TRIM expression with cytokine production, as discussed in the next section.
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5.1.1 Expression of a large number of TRIMs in macrophages and DCs 

correlates with the induction of type-I IFN in response to TLR ligation or 

infection with influenza virus

We showed that a large number of TRIMs (C-2 and C-3) are differentially up- 

regulated in macrophages and DC after exposure to viral and bacterial products 

which result in production of different cytokines. Therefore we asked if the presence 

of specific cytokines would correlate with TRIM expression. For this purpose, 

macrophages and mDCs were stimulated with CpG, LPS, dsRNA (poly I:C) and 

infected with influenza viruses PR8  and CAL while pDCs were infected with PR8  

and CAL, and stimulated with CpG. We analyzed TRIM expression by RT-PCR and 

cytokine protein production after 24 hour stimulation. Figure 5.1 shows TNF, IL-10, 

1L-I2p70, and type-I IFNs profiles in macrophages and DC and a heat map of TRIM 

expression.

TNF was produced at intermediate levels by macrophages and mDC upon all 

treatments with no significant difference in the levels of expression. pDC expressed 

high levels of TNF upon CpG stimulation with much lower levels produced upon 

viral infection (Figure 5.1 A). The TNF pattern of expression observed in the 

different cell types upon different stimulations did not appear to correlate with up- 

regulation of TRIM expression in C-2 and C-3 or C-4 (compare Figure 5.1A with 

5.1B).

Macrophages produced relatively high levels of IL-10 when stimulated with 

PR8 , CAL, LPS with lower levels produced upon CpG stimulation and significantly 

lower levels produce upon Poly I :C stimulation. mDC produce lower levels of IL-10 

upon all treatments as compared to macrophages, whereas pDC did not produce any 

detectable levels of IL-10. This pattern of IL-10 production by all cell types and
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treatments also did not appear to show any correlation with TRIM expression. In 

particular pDC do not produce IL-10 but expression of TRIMs in C-3 was strongly 

up-regulated upon viral infection and CpG. On the other hand, expression of TRIMs 

in C-2 was not detected in pDC, and this could possibly correlate with IL-10 

production since expression of these TRIMs was highly induced in macrophages and 

DC. However, macrophages stimulated with Poly I:C produce little to no IL-10 and 

yet high levels of TRIMs in C-2 and C-3 were induced, suggesting that IL-10 is not 

involved in the up-regulation of TRIMs in C-2 and C-3.

Finally, IL-12p70 was not detected in macrophages and only low levels were 

observed in mDC upon all stimulations, whereas CAL virus induced the highest 

levels of IL-12p70 in pDC. Again, production of IL-12p70 did not seem to correlate 

with TRIM expression.

Of note, expression of TRIM genes in C-2 and C-3 was especially high under 

conditions which induced the highest levels of type I IFN (Fig. 5.1 A,B). 

Macrophages and mDC infected with 2 different strains of Influenza virus produced 

different levels of type-1 IFNs. As compared to New Caledonia, PR8  infection 

produced lower levels of IFNp in macrophages and mDC. A more significant 

difference was observed for IFNa produced by pDC. We observed that expression of 

TRIMs in cluster C-2 and C-3 Was up-regulated in all cell subsets in response to viral 

infection and this expression showed the best correlation with IFNp in macrophages 

and DC and IFNa in pDC (compare Figure 5.1 A and 5. IB; [other type-I IFNs 

including IFNp usually show similar patterns of expression as IFNa in pDC]).

CpG stimulation of macrophages and DC resulted in very low production of 

IFNp as compared to infection with viruses (Fig. 5.1 A). This correlated with lower 

induction of TRIM expression, suggesting a possible role of type I IFN in this up-
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regulation. However, expression of TRIM2 and TRIM6  was restricted to 

macrophages and mDC and was low to undetectable in pDC, even upon stimulation. 

LPS stimulation also led to significant levels of IFNp production in macrophages and 

mDC in correlation with up-regulation of TRIMs expression in C-2 and C-3. 

Notably, Poly I:C stimulation produced the highest levels of IFNp in macrophages 

which correlated with the highest expression of TRIMs in C-2 and C-3. Moreover, 

Poly I:C induced very low levels of IFNp in mDCs which also correlated with very 

low induction of TRIM expression (Figure 5.IB). The fact that influenza virus 

infection and dsRNA (Poly I:C) stimulations led to higher production of IFNp in 

macrophages as compared to mDCs suggested intrinsic differences between these 

cell types, possibly related to a higher expression of TLR3 by macrophages.

TRIMs in C-4 were highly expressed in unstimulated pDC, and these TRIMs 

were not significantly affected upon stimulation, confirming our previous results and 

suggesting that macrophages, mDC and pDC have different intrinsic capacities to 

express this group of TRIMs.

5.1.2. Induction of TRIM19 upon TLR ligation is dependent on the TRIF 

adaptor molecule and correlates with IFNp production

We have shown that expression of TRIMs in cluster C-2 and C-3 in 

macrophages is highly up-regulated upon Poly I:C stimulation, followed by influenza 

virus infection or LPS stimulation, and to a lesser extent if at all by CpG. This 

induction of TRIM expression seemed to correlate with production of IFNp. 

Therefore we asked if this up-regulation of TRIM expression was due to a direct 

effect of the virus on TRIM expression, or an indirect effect as a result of the 

signalling cascade leading to the induction of cytokines upon infection. Influenza
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virus infects macrophages and DC resulting in activation of TLR arid non-TLR 

pathways to induce cytokine production (discussed in section 1.5.1). The TLR 

signalling pathways can rely on either the MyD8 8  or the TRIF adaptor molecules to 

recruit essential molecules required for induction of cytokine gene expression [154]. 

To further gain insight into the mechanism of regulation of TRIM expression we 

used BM macrophages derived from either MyD8 8  or TRIF deficient mice to 

investigate if induction of TRIM expression depends directly on TLR activation or 

downstream events resulting from specific signalling pathways. Expression of 

TRIM19/PML, a well known IFN-inducible gene [220], was not up-regulated upon 

stimulation of macrophages with CpG which only signals via the MyD8 8  pathway, 

and low to undetectable levels of IFNp are induced (Figure 5.2A). In contrast, 

stimulation with LPS resulted in very significant up-regulation of TRIM 19 

expression and this was completely impaired in TRIF -/- macrophages (Fig 5.2A). 

LPS induction of IFNp was completely dependent on the TRIF molecule since IFNp 

production was completely impaired in TRIF -/- macrophages as it was also 

induction of TRIM 19, indicating that TRIM 19 may be induced directly by the TRIF 

pathway or indirectly by the induction of IFNp production. In keeping with this, 

stimulation of TRIF -/- macrophages with Poly I:C resulted in only a partial 

reduction in the induction of TRIM 19 expression as compared with wild type (WT) 

controls (Fig. 5.2A) which correlated with only a partial impairment of IFNp 

induction in these TRIF-/- macrophages. This is consistent with previous reports that 

IFNp can also be induced by dsRNA via the RIG-I/MDA5 pathway independently of 

the TRIF adaptor molecule [291].

These data suggest that induction of TRIM 19 expression is due to an IFNp 

autocrine loop and not directly dependent on the TRIF adaptor molecule. Moreover,
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induction of TRIM19 expression and IFNp production, were both not significantly 

affected in MyD8 8  -/- macrophages stimulated with LPS or Poly I:C (Figure 5.2B) 

indicating that TRIM 19 expression as well as induction of IFNp does not require the 

MyD8 8  adaptor molecule.

5.1.3. Induction of TRIMs in C-2 and C-3 upon TLR ligation is 

dependent on the TRIF adaptor molecule and correlates with IFNp production

We now asked if the rest of the TRIMs in C-2 and C-3 followed the same

pattern of expression as TRIM19 and if this correlates with type-I IFNs. We therefore

focused our analysis of cytokine and TRIM expression in TRIF deficient mice as

described above. Figure 5.3A shows IFNp protein levels produced by WT and TRIF

-/- macrophages upon TLR stimulations measured by ELISA. Similar to TRIM19

expression shown above, stimulation with CpG did not induce expression of TRIMs

in C-2 and C-3 (with exception of TRIM2) (Figure 5.3B) nor did it induce much

IFNp production, suggesting that MyD8 8  is not involved in the regulation of TRIM

expression in macrophages. Conversely, the expression of all TRIMs in C-2 and C-3

was up-regulated upon LPS stimulation and this up-regulation was completely

impaired in TRIF -/- macrophages (Figure 5.3B) as was also the production of IFNp

(Figure 5.3A). Stimulation with Poly I:C led to even higher induction of all TRIMs

in C-2 and C-3 in correlation with IFNp production (Figure 5.3 A, B). This

expression was only partially reduced in TRIF -/- macrophages which also correlated

with only partial reduction of IFNp production (Figure 5.3 A, B). In addition to these

TLR stimulations we infected WT and TRIF -/- macrophages with CAL influenza

virus and obtained similar results to the stimulations with Poly I:C (Figure 5.3 A, B)

in that TRIMs in C2 and C-3 were up-regulated and their expression only partially
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reduced in TRIF -/- as was seen for IFNp production. The partial effect on IFNp 

production confirms previous reports that influenza virus can induce type-I IFNs by 

TLR signalling or during viral replication by a TRIF independent mechanism 

involving RIG-I/MDA5 pathway [292]. Although at this point we can not completely 

rule out a possible role of the TRIF pathway or the non-TLR RIG-1/MDA5 pathways 

in regulation of TRIM expression, the summary of observations strongly suggest an 

effect of type-I IFNs on up-regulation of TRIM expression: 1) Stimulation of 

TRIF -/- macrophages with dsRNA-Poly I:C resulted in only a partial reduction of 

TRIM expression and not a complete impairment in TRIM expression. This indicates 

that there are other factors independent of TRIF signalling that may lead to induction 

of TRIM expression. 2) Another possibility is a direct effect of the RIG-I signalling 

pathway on TRIM expression, however, we have already shown that induction of 

TRIM expression in macrophages stimulated with LPS, which does not activate the 

RIG-I pathway, is completely impaired in TRIF -/- macrophages, correlating with 

IFNp production. 3) We investigated the induction of TRIM 19 expression, a known 

type-I IFN inducible gene [220], in macrophages derived from MyD8 8  -/- mice or 

TRIF -/-. We showed that TRIM19 expression was not affected in MyD8 8  -/- 

macrophages upon LPS or Poly I:C stimulations, correlating with IFNp production. 

4) We showed that expression of TRIM 19, as well as the rest of TRIMs in C-2 and 

C-3 was not significantly up-regulated in macrophages upon CpG stimulation, in 

correlation with IFNp low levels of induction.
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5.1.4. Expression of TRIMs in C-2 and C-3 is dependent on type-I IFN 

signalling whereas those in C-4 are not.

Our data show that the expression of TRIM genes in clusters C-2 and C-3 is 

up-regulated in macrophages and DC upon viral infection (Figure 4.1 A and 5.IB), 

and that the level of up-regulation appeared to correlate with the induction of type I 

IFN production (Fig. 5.1 and 5.3). In contrast, a distinct group of TRIM molecules 

comprising C-4 was expressed constitutively at high levels in pDC (Fig. 5.IB), and 

yet for the most part was not further up-regulated by viruses, although high levels of 

type I IFN were induced in these cells (Fig. 5.1 A). To further investigate the possible 

involvement of type-I IFNs in the mechanisms of regulation of TRIM expression, 

macrophages, mDC and pDC were obtained from mice lacking the type I IFNa/p 

receptor (IFNa/pR-/-) and their TRIM expression was compared to equivalent WT 

cells, under the conditions of stimulation described earlier.

Expression of TRIMs within clusters C-2 and C-3, inducible by virus 

infection or CpG stimulation in macrophages and DC, was completely dependent on 

type I IFN production since their expression was not up-regulated in the IFNa/pR-/- 

cells (Fig. 5.4, C-2, C-3). Although expression of TRIM20 and TRIM35 was up- 

regulated upon stimulation, in contrast to the rest of the TRIM in C-2 and C-3, these 

increases were not completely dependent on type I IFN (Fig. 5.4, C-2, asterisks and 

black box). In keeping with our findings on the up-regulation of TRIM expression in 

C-2 and C-3 by virus and CpG, stimulation with LPS and dsRNA [poly(l:C)J (Figure 

5.5), which signal via additional or different intracellular adaptor proteins 

downstream of TLR to produce type I IFN [292], also led to up-regulation of these 

TRIM in macrophages and mDC via a type I IFN-dependent mechanism, again with 

the exception of TRIM20 in macrophages/DC and TRIM35 only in mDC.
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Collectively these data show that expression of the majority of TRIM molecules 

within clusters C-2 and C-3 is exclusively dependent on type I IFN signalling 

regardless of whether macrophages and DC are infected by different influenza virus 

strains or stimulated with TLR ligands. In contrast, the TRIM molecules contained 

within cluster C-4 were constitutively expressed at high levels in pDC, and were not 

significantly affected by a complete absence of signalling through the type I IFN 

receptor.

5.1.5. A region on mouse chr-7 contains TRIMs that are up-regulated in 

macrophages and DC by type-I IFNs.

We have defined clusters of TRIM (C-l to C-4) based on their levels o f : 

expression in the different cell types (Fig. 4.1) and up-regulation in macrophages and 

DC in a type I IFN-dependent manner (Fig. 5.4 and 5.5). To determine whether 

TRIM genes may have Co-evolved, we searched for co-regulation of expression of 

closely linked TRIM genes. Although TRIM proteins are spread across the human 

: genome, previous studies have suggested that these proteins have evolved by gene 

duplication leading to groups of closely related TRIM on individual chr which may 

share functional similarities [20, 26, 293]. Similarly, mouse TRIM are found on 

almost all of the mouse chr and groups of closely related TRIM are observed on chr- 

7, in the MHC region on chr-17, and less closely related groups on chr-11 and chr-3 

(Figure 5.6A and 5.6B) [270, 273]. TRIM genes mapping to mouse chr-3, chn-11 

and chr-17 were expressed broadly in the different cell types with no distinct pattern 

of expression (Figure 5.6C). In contrast, the majority of TRIMs examined that map 

to mouse chr-7 (TRIM3, TRIM6, TRIM21, TRIM30 and TRIM34), syntenic to 

human chr-11, showed expression in macrophages and DC but not in T cells
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following stimulation (Fig. 5.6D). Up-regulation of these TRIM in macrophages and 

DC by viruses was completely impaired in cells deficient in type I IFN signalling 

(Fig. 5.6E). TRIM6 , TRIM21, TRIM30 and TRIM34 are the most closely related and 

group tightly in the F2 region of mouse chr-7 (Fig. 5.6B). The fact that these TRIM 

are phylogenetically related and are eo-regulated by type I IFN suggests that they 

may have co-evolved to co-ordinate important anti-viral functions. In keeping with a 

role in anti-viral function, TRIM in this region (F2) of mouse chr-7 show high 

sequence similarity with TRIM in an equivalent region (p i 5.4) of the syntenic human 

chr-1 1 , which have been demonstrated to have anti-viral activity (schematic 

representation shown in Figure 5.6F) [33, 210, 218, 272].

5.1.6. Microarray analysis of human macrophages revealed a similar 

pattern of TRIM expression to mouse TRIMs

So far our study on regulation of TRIM expression has only included mouse 

TRIMs, however many of the TRIMs shown to date to have anti-viral functions are 

human or primate TRIMs and some of them including TRIM5 a  and TRIM22 do not 

exist in mice. Therefore we wanted to examine if expression of the human TRIMs 

would correlate with those which we show in mice to be up-regulated upon viral 

infection or TLR stimulation in a type-I IFN dependent manner also correlate with 

type-I IFNs. For this purpose we searched the Microarray database (gene expression 

omnibus (GEO) website: wwwmcbi.nlm.nih.gov/geo) for previous expression studies 

using human macrophages. Martinez et al. [294] have previously reported a 

microarray study on the transcriptional profiling of the human monocyte-to- 

macrophage differentiation and polarization, and reported new molecules expressed 

during this differentiation process. However, they did not report any information
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regarding to TRIM expression even though this microarray contained probes for most 

TRIM genes. Therefore we obtained the raw data freely available in the microarray 

database (accession number GSE5099) and analyzed these data using GeneSpring 

software. Strikingly, and consistent with our own findings in mice, up-regulation of 

the same TRIM genes in human macrophages was mainly observed under conditions 

which resulted in the induction of IFNp (in this case LPS and IFNy), as observed in 

this previously published microarray study [294](Figure 5.7A). In contrast, this was 

not observed in human macrophages stimulated with IL-4, which did not induce 

IFNp production (Fig. 5.7A, indicated with an asterisk). TRIM genes, which we 

found to be constitutively expressed in mouse pDC (Fig. 4.1 A, C-4), were not up- 

regulated in human macrophages under these conditions [294] (Fig. 5.7B). Strikingly, 

expression of TRIM3, TRIMS, TRIM6 , TRIM21, TRIM22 and TRIM34, located on 

human chr-1 1 , as previously discussed, and shown previously to have anti-viral 

activity [33, 210, 218, 272] are simultaneously up-regulated in human macrophages 

under conditions that led to induction of IFNp [294] (Fig. 5.7A, C). This is in 

keeping with our data that the mouse TRIM genes located on the syntenic chr-7 are 

up-regulated via a type I IFN-dependent mechanism (Fig. 5.6E), supporting our 

hypothesis that these mouse and human TRIM genes located in the specific regions 

on chr-7 and chr-11, respectively, have co-evolved to combat viruses. The majority 

of the TRIM genes, which we showed in mouse macrophages to be up-regulated by 

virus in a type I IFN-dependent manner (Fig. 5.4), were also up regulated in human 

macrophages producing IFNp (Fig. 5.1 A, and Table 5.1). Additionally, human 

TRIM5, TRIM 17, TRIM31, TRIM33, TRIM48 and TRIM62, which map to different 

chromosomal location, that are either non-existent in mouse or were not tested in our 

study, were up-regulated in human macrophages under these conditions. Taken
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together, our study provides data which allows us to hypothesize that TRIMs 

expressed in the context of type I IFN signalling may be a broad predictor of anti­

viral activity. It will be of interest to determine if all the TRIMs found in our study to 

be type-I IFN dependent indeed have anti-viral functions.

5.1.7. Type-I IFN dependent expression of TRIMs only partially 

correlates with the presence of a B30.2 domain

The B3G.2/SPRY domain is a conserved region found in butyrophilin, a 

transmembrane protein belonging to the immunoglobulin super family [295]. The 

B30.2 domain is present in a large number of proteins that can be classified in 11 

different families with diverse functions (discussed in section 1.3.1)[26]. A few 

TRIMs have been shown to restrict viral replication and a fraction of them interact 

with viral products through the B30.2 domain. Some studies have shown that the 

B30.2 domains of some TRIMs have been subjected to evolutionary pressure and 

possibly have been selected as an interacting domain with viruses. Not all TRIMs 

containing B30.2 domains have yet been found to restrict viral replication; however it 

is possible that they have not been tested for an appropriate panel of viruses. 

Moreover, as well as their potential involvement in direct restriction of viral 

replication, it is possible that TRIMs containing the B30.2 domain may be involved 

in innate immunity or other immune processes that may result in protection against 

viruses through indirect mechanisms. Interestingly, taken together our and previous 

studies have shown that TRIMs found to have anti-viral functions are also inducible 

by type-I IFNs (see table 5.2). In this study we further define these TRIMs not only 

to be type-I IFN inducible, but also to require type-I IFNs for up-regulation. 

Therefore we asked if the requirement for type-I IFN correlates with the presence of
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the B30.2 domain suggested to have been selected to interact with viruses. The B30.2 

domain is present in 32 out of 62 mouse TRIM proteins (52%) which have not all 

been shown as yet to restrict viral replication. Phylogenetic analysis showed that the 

B30.2 containing proteins investigated in our study grouped in a phylogenetic clade 

of related proteins (Fig. 5.8 A), consistent with the fact that they all share a common 

C-terminal domain. We then examined if these TRIMs were expressed in 

macrophages and DCs in a type-I IFN dependent manner. Figure 5.8B shows that a 

large number of TRIMs containing the B30.2 domain fall in our clusters C-2 and C-3 

which are dependent on type-I IFNs, suggesting they may have anti-viral functions. 

However, not all TRIMs containing a B30.2 domain were induced by type-I IFNs in 

keeping with the notion that B30.2 domains are also found in proteins involved in 

other functions [26]. Strikingly, many of the TRIMs that do not contain the B30.2 

domain are also in our clusters C-2 and C-3 which are type-I IFNs inducible (Figure 

5.8C). Some of these TRIMs including TRIM 19 have been suggested to have anti­

viral functions, thus type-I IFN dependency appears to correlate better with anti-viral 

activity than the presence of a B30.2 domain.

5.2. Discussion

We defined two clusters of TRIM genes (C-2 and C-3) based on their 

preferential induction in macrophages and DC upon influenza virus infection. Using 

cells from mice deficient in MyD8 8  and TRIF adaptor molecules we showed that this 

expression correlated with type I IFN production. Using macrophages and DC 

deficient in type-I IFN signalling we demonstrated that expression of TRIMs in C-2 

and C-3, with exception of TRIM20 and TRIM35, was completely dependent on 

type-I IFNs.
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We have shown that expression of all TRIMs in clusters C-2 and C-3 in 

macrophages was induced via a TLR mediated TRIF-dependent pathway which 

correlated with IFNp production (Figure 5.3). We also showed that production of 

IFNp and expression of TRIMs in C-2/C-3 in macrophages can be induced by a 

TRIF-independent pathway in response to influenza virus infection or dsRNA (Poly 

I:C) stimulation, consistent with the fact that viral infection and stimulation with 

dsRNA can activate the RIG-I pathway, independently of TLR activation [291]. The 

induction of TRIM expression in response to these stimulations could be explained 

either by a direct effect of the activation of TRIF pathway or indirectly by an 

autocrine effect of IFNp. However, we demonstrated using macrophages, mDC and 

pDC derived from type-I IFN receptor deficient mice that expression of these TRIM 

depends on type-I IFN signalling. Although we did not test the role of the MyD88 

signalling pathway on the expression of all TRIMs in C-2 and C-3 , the fact that CpG 

does not induce significant levels of TRIM expression together with the fact that 

TRIM19 expression was independent of MyD88 signalling in macrophages, suggests 

that the rest of the TRIMs in C-2 and C-3 do not require the MyD88 pathway in 

macrophages.

We have also shown that infection with two different influenza viruses, PR8 

and New Caledonia (CAL), which are both MINI strains, resulted in up-regulation of 

TRIMs in clusters C-2 and C-3 in a type-I IFN dependent manner. Notably, CAL 

virus induced higher levels of TRIM expression as compared to PR8 in all cell types, 

and the level of TRIM expression correlated with the levels of type-I IFN produced 

upon infection with these viruses. The fact that infection with CAL virus resulted in 

higher levels of IFNp in macrophages and mDC, and higher levels of IFNa in pDC 

as compared to infection with PR8 could be due to changes in the sequence of the
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non-structural protein (NS1) of these viruses, which is known to inhibit cytokine 

responses. NS1 protein can bind and sequester dsRNA before it activates IRF-3 or 

NF-kB [296, 297] via TLR3 or RIG-1 dependent pathways. However, using 

macrophages, mDC and pDC lacking functional type-I IFN receptor signalling we 

demonstrated that the induction of TRIMs in C-2 and C-3 (with exception of 

TRIM20, 35) was completely dependent on type-I IFN signalling and does not 

require viral replication. This is supported by the fact that up-regulation of these 

TRIMs in IFNRA -/- macrophages and DC is also completely impaired in response to 

LPS or Poly I:C, which are stimulations that do not contain virus or NS1 protein. 

These data could help in the understanding of the host response to viruses and 

consequently may have a great impact in the design of anti-viral strategies to protect 

people against influenza virus infections.

Unlike the majority of TRIM genes in C-2 and C-3, expression of TRIM20 

and TRIM35 in macrophages and DC was not exclusively dependent on type I IFN, 

in keeping with previous reports that expression of these TRIMs can be up-regulated 

by TNF or IL-10, or M-CSF, respectively [100, 286]. However we found here that 

TRIM35 is expressed at higher levels in mDC derived with GMCSF as compared to 

macrophages derived with MCSF. Moreover, the expression of TRIM35 was further 

up-regulated upon stimulation in both macrophages and mDCs however this up- 

regulation was only completely dependent on type-I IFNs in macrophages but not in 

mDC suggesting the involvement of additional factors in the regulation of TRIM35 

expression in mDC.

Expression of TRIM 14, TRIM19, TRIM21, TRIM25, TRIM26 and TRIM34 

(all in C-2 and C-3) has previously been shown to be up-regulated by influenza virus 

infection in a human epithelial cell line and it was inferred that this up-regulation was
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caused by production of type I IFN [298]. Furthermore, expression of TRIM8, 

TRIM 19, TRIM20, TRIM21, TRIM25, TRIM30 and TRIM34 (all in C-2 and C-3) 

was earlier shown to be up-regulated upon addition of either type I or type II IFN to a 

variety of cultured cells [200, 218, 224, 282, 288-290]. However, an exclusive 

requirement for type I IFN in the induction of TRIM expression has not been 

addressed. We now show that the expression of a large number of TRIM genes (C-2 

and C-3) is up-regulated by influenza virus and TLR ligation in macrophages and 

DC, for the most part via a type I IFN-dependent mechanism (Fig. 5.4 and 5.5). 

Macrophages and DC are susceptible to influenza virus infection but are known to 

limit productive viral replication [299, 300], using a number of IFN-inducible anti­

viral proteins including Mx, PKR and possibly TRIM19 [144, 301, 302]. We propose 

that the large group of TRIM that we defined as clusters C-2 and C-3 may all 

function to limit viral replication in macrophages and DC, possibly by different 

mechanisms. For example, TRIM25 by ubiquitinating RIG-I Contributes to the 

signalling pathway required for IFN(3 production [12]. Our findings that induction of 

TRIM25 by influenza virus infection is exclusively dependent on type I IFN in 

macrophages and DC indicates, however, that a tight autocrine loop is necessary for 

TRIM25 expression and IFNp production in these cell subsets.

Our results suggest that macrophages, mDC and pDC may have different 

intrinsic capacities to express certain TRIM molecules regardless of their cytokine 

profile (Fig. 5.1, C-4). For example, those in C-4 were expressed constitutively in 

pDC at high levels as compared to macrophages and mDC and yet their expression 

was not up-regulated by viruses, nor dependent on signalling by typeT IFNs (Fig. 5.4, 

C-4). This begs the question as to their function, particularly since pDC have been 

strongly implicated as dominant in the innate immune response to limit viral
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infections as a result of their secretion of large amounts of type I IFN upon viral 

infections [187, 303]. Therefore constitutive expression of these TRIM genes in pDC 

may reflect distinct or additional anti-viral function of TRIM molecules in this 

specialized cell type without a requirement for type-I IFNs for expression. Our 

observations that this cluster C-4 of TRIM genes is also expressed in T cells may 

reflect the close relationship suggested between pDC and lymphoid cells from 

observations that pDC express a number of markers of the lymphoid lineage [287].

An other important implication of these different intrinsic capacities to 

express TRIMs is illustrated by the case of TRIM6, which we have shown is highly 

expressed in macrophages and mDC and is further induced by type-I IFNs. However, 

although pDC produce high levels of type-I IFNs we did not detect any expression of 

TRIM6 in this cell subset even upon stimulation. This may reflect specific functions 

of TRIMs in different cell subsets or involvement in different differentiation 

pathways [304].

The importance of our study in terms of this cell specific intrinsic capacity to 

express TRIM molecules may be related to the potential anti-viral function of TRIMs 

and intrinsic immunity [140]. In this respect, intrinsic immunity refers to viral 

restriction factors that are constitutively expressed in all cells of an organism. For 

example, it is normally assumed that macaque TRIM5a which restricts HIV-1 

replication is expressed broadly in all cell types of this species. However a recent 

study has suggested that rhesus macaque DC are susceptible to HIV-1 infection due 

to dysfunctional expression of TRIMS a, whereas the anti-viral restriction activity is 

still functional in the macaque macrophages and T cells [305]. Again, this highlights 

the importance of our study using purified primary cells where the specific 

expression of potential anti-viral TRIMs can be observed.
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Among the large number of TRIM dependent on type I IFN for their 

expression upon viral infection, was a group of homologous TRIM that mapped to 

the F2 region on mouse chr-7 (TRIMS, TRIM6, TRIM21, TRIM30, TRIM34) (Fig. 

5.6B), syntenic to the region p i5.4 of human chr-11, containing TRIM5, TRIM6, 

TRIM21, TRIM22 and TRIM34 [270], which have been reported to have anti-viral 

restriction activity (Figure 5.6F) [33, 210, 218, 272]. Furthermore, mouse TRIM6, 

TRIM30 and TRIM34 are phylogenetically related to human TRIM5, TRIM6, 

TRIM22 and TRIM34 [270]. With the exception of mouse TRIM30, none of these 

mouse TRIM proteins have so far been shown to have anti-viral activity. Taken 

together our findings suggest that mouse TRIMS, TRIM6, TRIM21, TRIM30 and 

TRIM34 located on chr-7 may have evolved similar mechanisms for viral restriction 

as the human TRIM genes located on chr-11. The human TRIM molecules located on 

human chr-11 have been suggested to exert their anti-viral restriction by B30.2 

domain-dependent interactions [272]. In keeping with this, four out of five TRIM 

genes (exception TRIM3) located on mouse chr-7 contain a B30.2 domain, 

suggesting that as in human these TRIM genes have co-evolved to restrict viruses. 

However, TRIM genes without the B30.2 domain, like TRIM 19, can also be involved 

in anti-viral functions [22]. Therefore, our classification of a large number of TRIM 

defined on the basis of their induction by viruses via a type I IFN-dependent 

mechanism in macrophages and DC may be an alternative predictor of anti-viral 

activity to the presence of a B30.2 domain or their chromosomal location, although 

this remains to be tested.

We show that TRIM genes containing a B30.2 domain are not confined to a 

particular cluster defined by their expression and/or up-regulation by viral infection 

via type I IFN, in line with a broad function of B30.2 domains in protein-protein
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interactions. Indeed, the B30.2 domain can be found in proteins that belong to ten 

different families additional to the TRIM family, some of which have been shown to 

play a role in signalling in immune cells and proposed to have been selected as a 

component of immune defence [26].

Using microarray data deposited in the gene expression omnibus (GEO) 

database analyzed a previous microarray experiment of human monocyte derived 

macrophages differentiated in the presence of MCSF and polarized with either LPS 

and IFNyor alternatively IL-4 [294]. We were able to show that the human TRIM 

orthologs to mouse TRIMs are also induced in conditions where type-I IFNs are 

present (Figure 5.7). Although this does not prove that all the human TRIMs are 

actually type-I IFN inducible, it is a good correlation implying that the expression of 

these human and mouse TRIM genes are regulated in similar Ways. This is important 

because it indicates that not only the TRIM proteins have been conserved during 

evolution, but also their mechanisms of regulation of gene expression remained 

conserved through evolution. Therefore these genes must play essential roles within 

the IFN system, and although not necessarily in direct interaction with viruses, it 

suggests they are involved in these innate immune processes. In this context, it is 

interesting to speculate that since TRIM proteins probably evolved from a common 

ancestral gene [272, 273], they may have carried with them their promoter regulatory 

sequences containing ISREs necessary for IFN responsiveness [147]. However since 

not all TRIMs are type-I IFN inducible, this begs the question as when, during 

evolution, was this capacity to respond to IFNs gained or lost. It remains to be seen if 

TRIM gene promoters may also share high degree of similarities that may answer 

this question and if this promoter sequence similarity may also predict anti-viral 

functions.
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In this study we have shown groups of mouse TRIM genes that are expressed 

either in CD4+ T cells, or alternatively in macrophages and DC. Clusters of TRIM 

expression were further subdivided on the basis of their up-regulation by influenza 

viruses or TLR ligands via a type I IFN-dependent mechanism in macrophages and 

DC, or in contrast their constitutive expression in pDC independently of type I IFN 

production. This grouping of TRIM genes based on their expression and regulation 

may provide leads to delineate the potential functions of this diverse family of 

proteins
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Figure 5.1. Induction of TRIM expression in response to viral infection or TLR 
stimulation in macrophages and DC correlates with type-I IFN production.
A )  Macrophages (MAC) and mDC were unstimulated (Uns) or treated with influenza virus 
strains PR/8 and CAL, or TLR ligands CpG, LPS or dsRNA (Poly I:C). pDC were treated 
with influenza virus PR8, CAL or CpG. After 24 h, cytokine protein was measured by 
ELISA. B) TRIM mRNA expression was analyzed by real-time PCR in macrophages 
(MAC), mDC and pDC described in panel (A). A heat map was generated by normalizing the 
values of each sample to the median of all samples for each gene (further details in Figure 
3.7); green: low expression; yellow: median value; red: high expression. Genes were 
clustered by levels of expression: The TRIMs shown in the previous section to be 
preferentially expressed in CD4+ T cells (C-l) were omitted here; TRIM genes preferentially 
expressed in macrophages and DC and up-regulated upon influenza infection (C-2 and C-3); 
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A) BM derived macrophages from wild type (WT) C57BL/6 and TRIF-deficient mice were 
unstimulated (Uns) or treated with Live influenza virus CAL, CpG, LPS or Poly I:C. After 
24 h, IFNP protein was measured by ELISA and B) cells were collected for RNA extraction 
and analysis of TRIM mRNA expression by real-time PCR. A heat map was generated by 
normalizing the values of each sample to the median of all samples for each gene (as in 
Figure 5.1); green: low expression; yellow: median value; red: high expression. Only the 
TRIMs in clusters C-2 and C-3, which expression is significantly up-regulated in WT 
macrophages upon any of these stimulations, is shown. Data are representative of three 
independent experiments. A model representing the possible mechanism of IFNp production 
by these TLR ligands is shown on top of the figure. CpG activates TLR9 and results in very 
low levels of IFNp production by a MyD88-depend, TRIF- independent pathway. LPS 
activates TLR4 and results in significant production of IFNP only by a TRIF-dependent 
pathway. Poly I:C stimulation or infection with influenza virus can activate both TLR3 or the 
non-TLR, RIG-I/MDA5 resulting in significant levels of IFNP production by both TRIF 
dependent and independent mechanisms. For more details see the text. Data are 
representative of three experiments.
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Figure 5.4. Type-I IFN dependent and independent expression of TRIMs upon 
Influenza virus infection or CpG stimulation in macrophages and DC.
Expression of many but not all TRIM induced by CpG or influenza virus is exclusively 
dependent on type I IFN in macrophages and DC. Macrophages, mDC and pDC from WT 
and IFNoc/pR-/- mice (Type-I IFNR - /- )  were infected with influenza virus PR/8 or CAL, or 
stimulated with CpG for 24 h. TRIM expression was determined by real-time PCR. The heat 
map was generated as in Fig. 4.1. TRIM expression in C-2 and C-3 was completely 
dependent on type I IFN. *TRIM20 (macrophages/mDC) and TRIM35 (mDC) expression 
was not completely inhibited in the IFNR - / -  cells. TRIM in C-4 were expressed 
constitutively in pDC at high levels independently of type I IFN. Data are representative of 
three experiments for macrophages/mDC and two experiments for pDC. TRIM indicated 
with solid circles contain a B30.2 domain. Expression of TRIM6, TRIM 14, TRIM 19, 
TRIM21, TRIM25, TRIM30, TRIM26 and TRIM34 was highly up-regulated upon viral 
infection (six to 24 times up-regulation, p<0.001), and to lower levels TRIM3, TRIM45, 
TRIM23 and TRIM8 expression was up-regulated upon stimulation (three to six times up- 
regulation, p<0.05), all in a type I IFN-dependent manner.
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expression was not completely inhibited in the IFNR - / -  cells. Data are representative of 
three experiments for macrophages/mDC. Expression of TRIM6, TRIM 14, TRIM 19, 
TRIM21, TRIM25, TRIM30, TRIM26 and TRIM34 was highly up-regulated upon viral 
infection (six to 30 times up-regulation, p<0.001), and to lower levels TRIM3, TRIM45, 
TRIM23 and TRIM8 expression was up-regulated upon stimulation (three to six times up- 
regulation, p<0.05), all in a type I IFN-dependent manner. Note that TRIM24 in 
macrophages is also significantly up-regulated but only statistically significant with Poly I:C, 
and also in a type-I IFN dependent manner.
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Figure 5.7. Expression of TRIMs in human monocytes and macrophages in different 
stages of differentiation and activation, from Martinez et al. [294].
A) Microarray study performed by Martinez et al [294] on human monocytes (Mo) 
differentiated with MCSF for 3 days (Mo-d3) or 7 days to generate macrophages either 
untreated (Mac) or treated with LPS/IFNy (Mac-1) or IL-4 (Mac-2). The microarray data was 
obtain from the gene expression omnibus (GEO) website (www.ncbi.nlm.nih.gov/geo), 
accession number GSE5099 and was analyzed by GeneSpring. Expression of all TRIMs 
present in the affymetrix array HG-U133 is shown. Data was normalized to the median 
(yellow) of all samples for each gene. In the colour scale, red indicates expression over the 
median value (up to 3 times) and green represents expression under the median value. A 
large number of TRIMs are up-regulated upon LPS/IFNy treatment, correlating with 
induction of IFNp (indicated with a star). Hierarchical clustering by Pearson correlation is 
shown. B) Expression of Human TRIMs from Martinez et al [294] organized into the clusters 
defined in our study (C-l to C-4, only the TRIMs used for our study in mouse cells are 
shown). Most of the human TRIMs in clusters C-2 and C-3 are up-regulated in human 
macrophages treated with LPS and IFNy which produce IFNp, supporting our data in mouse 
on their induction by type-I IFNs. C) Expression of human TRIMs from Martinez et al, that 
map to human chr-11 syntenic to the mouse chr-7. All human TRIMs that map to the region 
pi 5.4 of human chr-11 are up-regulated upon LPS and IFNy treatment which induce IFNp 
similarly to our data with TRIMs located on the F2 region of mouse chr-7.

134

http://www.ncbi.nlm.nih.gov/geo


cos-
FN3

TRIM9
TRIM1

“ 1----- TRIM 18
1 1,--------- TRTM46

Non-
B30.2

B30.2

No RING 
domain

r i

- TRIM59----
—  TRIM8
 TRIM24
 TRIM28
— TRIM45
—  TRIM2
 TRIM44
 TRIM20
 TRIM37
 TRIM23
 TRTM1Q
— TR1M6 
-TRIM34 
-TRIM 30 
-TRIM21 
-TRIM 68 
-TRIM27 
-TRIM39 
-TRIM 26 
-TRIM 35 
-TRIM25
-  I K IM  6 5 
-TRIM16 
TRIM 14

IFNR -/- IFNR -/■

B TRIMs containing B30.2 domain

Macrophages mDC

TRIM6
TRIM35

Type 1
IF NR

TRIM25
TRIM21

TRIM30

R M 2(i

TRIM34
TRIM27

TRIM39

J O  = C& < a 
3  ft, U U

TRIM68

WT Type 1

Type 1 
IFNR -/-IFNR -/-

J »->od a
3  A .U U

TRIMs without B30.2 domain
T vno 1

WT

«i' oe-Jd oi< 
3 ' f t . U

Type 1 
IFNR -/-

I  TRIM2 
L TRIM3 
TRIM45 
TRIM 19

I  TRIM23 
TRIM8

I TRIM24 
TRIM28

I I  TRIM37 
TRIM44 

TRIM59

os <  a.
3  f t . 3  3

Macrophages mDC

Figure 5.8. Type-I IFN dependent expression of TRIMs and the B30.2 domain.
A) Phylogenetic analysis of mouse TRIM proteins used in our study. A neighbour-joining 
tree based on the full length amino acid sequences of TRIM with their C-terminal domain is 
shown. Numbers indicate bootstrap proportions after 500 replications. TRIMs containing the 
COS-FN3 domains are in the yellow box. TRIMs without B30.2 domain are in the red box. 
TRIMs with a B30.2 domain are in the blue box. TRIMs with no RING domain are in the 
green box. B) Heat map representation of TRIM mRNA expression in macrophages (MAC) 
and DC upon influenza virus infection or stimulation with CpG, grouped by the presence (B) 
or absence (C) of B30.2 domains (these data was selected from Figure 5.4). Although the 
majority of TRIMs containing the B30.2 domain are type-I IFN dependent, many of the 
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TRIM Expression in human 
macrophages by microarray 

(Martinez etal)

Expression in mouse macrophages by 
RT-PCR, our study

TRIM1 N.A. N.A. ■
TRIM2 LowU.R. Low U.R.
TRIM3 U.R. . U.R.
TRIM5 U.R. . N.E.
TRIM6 U.R. U.R
TRIM8 DR. U.R.
TRIM9 : N.A. N.A.

TRIM 10 U.R. N.S. :
TRIM 13 U.R. N.S.
TRIM14 LowU.R. U.R.
TRIM 15 N.A. N.S.
TRIM16 DR. DR.
TRIM 17 : u.R. . N.S. ■
TRIM 18 LowU.R. LowU.R.
TRIM19 U.R. U.R.
TRIM20 N.A. U.R.
TRIM21 U.R. U.R.
TRIM22 U.R. N.E. : .
TRIM23 DR. U.R.

: TRIM24 N.A. N.A.
TRIM25 U.R. U.R.
TRIM26 U.R. U.R.
TRIM27 DR. N.A.
TRIM28 N.A. N.A.
TRIM29 U.R. N.S.
TRIM30 N.E. U.R.
TRIM31 U.R. N.S.
TRLM32 DR. . - N.S. :
TRIM33 U.R. ' ■ N.S.
TRIM34 U.R. U.R.
TRIM35 U.R. U.R.
TRIM36 : N.A. : N.S.
TRIM37 N.A. N.A. : .
TRIM38 LowU.R N.S,
TRIM39 N.A.. N.A.
TRIM44 DR. N.A.
TRIM45 Low U.R. U.R.
TRIM46 U.R. U.R.
TRIM48 U.R. N.S.
TRIM49 N.A. N.S.
TRIM52 DR. ' N.S.
TRIM58 : N.A. N.S.
TRIM59 - N.A. N.A. : .
TRIM62 U.R. ' - N.S.
TRIM66 DR. N.S.
TRIM68 LowU.R. N.A.

Table 5.1. Comparison of TRIM expression in mouse macrophages infected with 
Influenza virus (our study, Real time PCR) and human macrophages stimulated with 
IFNy and LPS (from Martinez et al. [294]; by microarray analysis).
Note that these stimulations in both mouse and human macrophages respectively lead to 
expression of IFNp. Not affected, N.A.; Genes up-regulated, U.R.; Genes down-regulated, 
D.R.; Genes not studied, N.S.; Not exist, N.E
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Cluster TRIM Shown 
when IFNs 

added

Have
anti-viral
activity

In M 0

Require
type1-IFN

In mDC

Require
type1-IFN

In pDC

Require
type-1IFN

C-terminal
domain

C-2 TRIM 2 FIL/lg/NHL

TRIM 6 V V B30.2

TRIM 3 V V V FIL/lg/NHL

TRIM 20 IFNa/y partially partially V -
TRIM 35 V partially B30.2

C-3 TRIM 25 IFNa V V V V B30.2

TRIM 14 V V V V B30.2

TRIM 45 Potential V V V FIL/lg

TRIM 19 IFNa/p/y V V V V -

TRIM 23 V V V ARF

TRIM21 IFNy V V V B30.2

TRIM 30 IFNa/p/y V V V V B30.2

TRIM 26 V V V B30.2
TRIM 34 IFNa/y V V V V B30.2
TRIM 8 IFNy V V V V -

Table 5.2. Induction of TRIM expression by type-I IFNs may suggest anti-viral activity.
Summary of the TRIMs found in our study to be dependent on type-I IFNs in macrophages, 
mDC and pDC. Our data confirmed previous studies that showed some TRIMs to be 
inducible by IFNs when added to the cell culture (shown in red). With exception of TRIM1 
which expression is not up-regulated in macrophages and DC, the expression of all the 
TRIMs found to have anti-viral activity are also regulated by type-I IFNs. This may suggest 
that type-I IFNs may predict anti-viral function of TRIMs. The data for anti-viral activity was 
compiled from different reports: [12, 22, 210, 231].
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Chapter 6: 

Future Perspectives



6.1. Summary of the Thesis

In this project we have performed a comprehensive analysis of expression of 

TRIM molecules in different cells of the innate and adaptive immune system 

including macrophages, mDC and pDC, and a panel of CD4+ T cells, which are all 

known to have different patterns of cytokine production. The large amount of 

information generated in this study and the complex set of data obtained here 

demanded an efficient method of data analysis to be able to observe any correlations 

between TRIM expression and cytokine production. By generating heat maps for real 

time PCR data presentation we defined clusters of co-regulation of TRIM gene 

expression that provide a broad picture which can undoubtedly help to point at 

strategies for defining TRIM functions.

We have defined four clusters of TRIM molecules on the basis of their distinct 

expression in either CD4+ T cells or macrophages and DC, which have different 

innate and adaptive immune functions to an extent determined by their cytokine 

profile. A group of TRIM genes was preferentially expressed in CD4+ T cells and 

exclusively contained the COS-FN3 motif associated with protein-protein 

interactions (Cluster 1). Additional clusters of TRIM were defined on the basis of 

their up-regulation by influenza viruses and TLR ligands via a type-I IFN-dependent 

mechanism in macrophages and DC (Clusters 2 and 3), suggesting that this large 

group of TRIM may play a role in anti-viral responses. Conversely, a distinct group 

of TRIM genes was constitutively expressed in pDC independently of type-I IFN 

production (Cluster 4). The classification of TRIMs in this study according to their 

expression in cells of the innate and adaptive immune system and their dependency 

on type-I IFNs, provided us with important information that can be used in future
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studies to define function of specific TRIMs that may be involved in either innate or 

adaptive immune responses.

6.2. Future studies based on the classification of TRIMs by expression in 

cells of the immune system and type-I IFN dependency

Taken together, our study opens new avenues for defining the function of 

TRIM proteins. Based on our classification of TRIM proteins by their levels of 

expression we can propose to study TRIM function in the context of their clusters of 

expression in the respective primary cell subsets where they are found to be 

specifically expressed. However, future studies to complement our findings should 

also include the analysis of TRIMs protein to test if the changes in mRNA expression 

indeed translate into changes in protein levels. In addition, future studies should also 

take in consideration the fact that many TRIMs may have post-translational 

modifications that may affect their function, as well as the possible presence of 

TRIM isoforms.

The following are some of the proposed studies to delineate TRIM function, 

which come to mind, based on our classification of TRIM molecules.

6.2.1. Future studies on TRIMs in Cluster-1

An important outcome of our study is the fact that TRIMs in C-l showed a 

strong correlation of structural homology with preferential expression in CD4+ T 

cells. TRIM 1, 9, 18, 46 in C-l possess the COS-FN3 domains and this raises the 

possibility that other TRIMs containing this domain organization not tested in our 

study may also be preferentially expressed in T cells. Therefore, our study could be 

expanded to test if the Other COS-FN3 containing TRIMs (TRIM36 and TRIM67),
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would follow the same pattern of expression as the TRIMs in C-l. Another important 

aspect of these findings is that TRIMs in C-l (TRIM1, 9, 18, 46) have been 

previously reported to bind microtubules via this COS-FN3 domain [38]. 

Microtubule organization has been shown to be important during immune function 

since microtubule dynamics is crucial for T cell activation and can regulate the 

establishment of cell polarity, cell migration, and direct secretion of cytokines and 

cytolytic granules [306] . Therefore, generation of conditional knockouts of these C- l 

TRIMs in T cells may reveal specific effects on function in vitro and in vivo. In 

addition* since all of these TRIMs share high degree of homology and TRIM 18 has 

been previously implicated in MAP kinase signalling pathways [276, 277], it is 

possible that other TRIMs in C-l may also be involved in signalling pathways. To 

test this possibility, future studies could include searching for post-translational 

modifications in TRIM proteins which are important in signal transduction pathways 

(e.g. phosphorylation or ubiquitination). Over-expression studies of these TRIMs to 

test if they are involved in pathways to induce cytokine production could be 

complemented by the generation of conditional knockout mice where CD4+ T cells 

are generated to lack functional forms of these TRIMs. Other experimental 

approaches could include knockdown assays in CD4+ T cells using small interfering 

RNA (SiRNA) of these TRIMs either individually or in combination to explore their 

possible contribution in common functions in T cells.

6.2.2 Future studies on TRIMs in C-2 and C-3

The large number of TRIMs classified in C-2 and C-3 that we found highly 

expressed in cells of the innate immune system supports a role of these TRIMs in 

innate immune responses. Since many of the TRIM proteins that have been
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previously shown to have anti-viral activity are also inducible by type-I IFNs, it 

could be hypothesized that induction of TRIM expression in a type-I IFN dependent 

manner may predict anti-viral function. To test this, future studies could focus on all 

of the type-I IFN dependent TRIMs (TRIMs in C-2 and C-3) to test their potential 

anti-viral activity against a broad panel of viruses, not only retroviruses, and should 

include in vitro and in vivo experimental systems. Viral replication could be tested by 

using GFP labelled viruses and Flow cytometry to obtained information at the single 

cell level and the effects on the innate immune system (e.g. cytokine production) or 

direct anti-viral activity. Testing the anti-viral effects of each TRIM could also be 

done by knocking down TRIM expression using SiRNA or knockout mice, or 

conversely over-expressing specific TRIMs against the panel of viruses. If anti-viral 

activity is detected, indirect mechanisms via induction of innate signalling pathways 

(e.g. cytokines) could be tested by using cells lacking functional forms of different 

cytokine receptors, for example TNF receptor knockouts or the type-I IFNRA1 -/-.

Our study also opens a new opportunity to expand the investigation to the rest 

of the TRIMs in this family to address their possible regulation by type-I IFNs. This 

could be done by repeating our experiment using cells from the type-I IFNRA -/- 

versus wild type controls including all the rest of the TRIM family members and 

analyze their expression by using new, low cost high sensitivity and high throughput 

microarray Chips (Illumina Sentrix).

6.2.2.1. Inducible expression of TRIMs by type-I IFNs versus 

type-II IFNs (IFNy).

Signalling by Type-I (e.g. IFNa/p) and Type-II (IFNy) IFNs may lead, in some 

cases, to induction of common genes. However, some distinct differences in these
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pathways may result in induction of specific genes for each pathway. IFNy signalling 

results in the formation of STAT1 homodimers which bind GAS elements, a distinct 

sequence from the ISRE sequence in type-I IFN inducible genes [147, 181](For more 

details see section 1.5.1.6.). Although it is possible that TRIMs in C-2 and C-3 are 

specifically induced by type-I IFNs but not IFNy, in our study we can not rule out the 

possibility that IFNy may induce TRIM expression in macrophages and DC. Also, we 

cannot rule out the possibility that IFNy may induce the production of IFNp and thus 

subsequent up-regulation of TRIM expression. To test the possible role of IFNy in 

induction of TRIM expression, IFNy could be added to macrophages and DC in the 

presence or absence of stimulation with different TLR ligands. Alternatively, TRIM 

expression could be tested in cells from IFNy receptor knockout mice upon different 

stimulations of whole organ cell suspensions (e.g. mouse spleen or human PBMC). 

The IFNy effects could also be blocked using specific antibodies or performing the 

experiments in presence or absence of SiRNA for IFNy. If these experiments provide 

data that can distinguish TRIMs induced by type-I IFNs from TRIMs induced by 

IFNy, then the up-regulation of these type-I IFN specific TRIMs could be used in the 

future as an indicator of the presence of type-I IFNs during in vivo infections where 

the cytokine protein may be more difficult to detect due to sensitivity or kinetic 

constrains.

6.2.2.2. Induction of TRIM expression in CD4+ T cells by type-I 

or type-II IFNs

We have shown that TRIMs in C-2 and C-3 are highly induced in macrophages 

and DC in a type-I IFN dependent manner, but for the most part, the expression of
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these TRIMs was not significantly up-regulated by IFNy in CD4+ T cells. This is 

judged by the fact that TCR stimulation of Thl cells which produce high levels of 

IFNy, did not result in a significant increase of TRIM expression. This discrepancy 

could be explained by intrinsic differences between macrophages/DC and CD4+ T 

cells to express specific TRIMs, or alternatively TRIM genes promoters could 

contain only ISRE elements and not GAS elements and therefore would be 

responsive only to type-I IFNs and not IFNy, as explained above. However, in our 

study we did not measure type-I IFNs produced by CD4+ T cells, consequently we 

can not rule out that TRIMs are not induced in T cells by type-I IFNs. Since most 

cells are capable of producing IFNp upon viral infection and also express the type-I 

IFN receptor, it is thus possible that the TRIMs found in our study in C-2 and C-3 

may also be induced in CD4+ T cells in conditions where type-I IFNs are present. 

This could be tested using CD4+ T cells derived from the type-I IFN receptor 

deficient mice and infections with viruses that may target CD4+T cells and may 

result in production of IFNp. On the other hand, it is also possible that expression of 

TRIMs in C-2 and C-3 may be induced by type-I IFNs in a paracrine manner when 

TLR or virus stimulated DC are present. This could be tested firstly by adding 

exogenous type-I IFN cytokine to the T cell culture, in the presence or absence of 

TCR activation. If up-regulation of TRIM expression is detected, then the possible 

type-I IFN dependent effect could be then tested in CD4+ T cells derived from 

IFNRA -/- mice. These experiments could indicate if CD4+ T cells, macrophages and 

DC have different intrinsic capacities to express this group of TRIMs, or if it is only 

the lack of type-I IFNs that leads to no up-regulation of these TRIMs in T cells.
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6.2.3. Future studies on TRIMs in C-4

An interesting outcome of our study is the finding of highly expressed TRIMs 

in pDC (TRIMs in C-4). These cells are highly specialized and are extremely 

important in secreting high levels of type-I IFNs during viral infections [303]. This 

raises the question as to whether TRIMs in C-4 may be related to type-I IFN 

production, differentiation pathways, or anti-viral functions. Although this group of 

TRIMs is also expressed in high levels in CD4+T cells suggesting a potential 

relationship between these cell subsets as previously suggested [287], the generation 

of mice lacking functional forms of these TRIMs in either pDC or CD4+ T cells 

conditionally, may reveal answers to these questions. ,

6.3. Future studies on individual TRIMs: TRIM19/PML

Our study demonstrated a large number of TRIMs that show interesting patterns 

of expression and could be chosen to be studied individually. We have identified the 

expression of 15 TRIMs that are exclusively dependent on type-I IFNs in primary 

DC and macrophages. Within this group, TRIM19/PML showed an interesting 

pattern of expression since it was also highly expressed in pDC even without 

stimulation. In addition, TRIM19/PML is also attractive for further investigation 

because it has been previously shown to be involved in a variety of cellular functions 

including the TGF(3 signalling pathway [204], IFNy signalling pathway [48], 

chromatin remodelling, transcriptional repression and activation as part of the nuclear 

bodies [31], however its predominant role is still unclear. Induction of TRIM19 

expression by type-I IFNs may have an effect in the regulation of a wide variety of 

signalling and differentiation pathways and it is possible that TRIM 19 may thus 

function at a broader level with respect to immune responses to pathogens.
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Figure 6.1 shows a model of the mechanism of regulation of TRIM19 expression and 

its effects on other cellular functions. In vivo studies are very limited and have failed 

to provide any mechanism on TRIM19/PML function during in vivo infections with 

VSV and LCMV [226]. Although a few studies have been reported on the possible 

effects of TRIM molecules on influenza infection in epithelial cell lines in vitro, little 

has been done on the potential role of, TRIM 19 in in vivo during influenza virus 

infection.

To test the possible anti-viral role of TRIM19/PML in vivo, we propose to 

infect TRIM19/PML -/- mice with influenza virus infection and analyze for:

-Cytokine production (Type-I IFNs, IFNy, EL-12, EL-23 TNF, IL-10, TGF(3)

-Viral load

- Weight loss

- Antibody titres

We have performed some preliminary experiments to test the possible role of 

TRIM19/PML in regulation of cytokine production in response to TLR stimulation. 

Using ex-vivo DC from wild type and PML -/- mice stimulated with CpG we have 

observed that IL-12p40 levels are significantly higher in myeloid C D llb+, CD8 a ‘ 

DC from PML -/- mice as compared to equivalent cells from littermate controls (data 

not shown). This could have an important effect during clearance of bacterial 

infections and intracellular pathogens that require Thl responses, since it has been 

shown that IL-12 from infected macrophages or DC is essential to sustain effector 

Thl cells generated in vivo to mediate long-term protection to intracellular pathogens 

[307-309]. Thus far although bacteria can induce IFNy or type-I IFNs, nothing is 

known as to whether TRIMs are induced during bacterial infections or whether they
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have any anti-bacterial effect. To address this point we will perform in vivo 

experiments in TRIM19/PML -/- mice infected with Listeria monocytogenes. These 

studies will include:

- Testing for bacterial load and time for development of pathogenicity

- Cytokines in serum and cell suspensions from infected organs

- CD4 and CD8  responses and macrophages/DC ex-vivo

These studies will have a great impact in our understanding of TRIM function 

in immunity and may lead to develop better strategies to control viral and bacterial 

infections.

In addition, it will be of interest to investigate the possible role of TRIM 19 in 

CD4+ T cells. Given that TRIM 19 may be involved in TGF(3 and IFNy signalling, it 

is of interest to test whether TRIM 19 plays a role in the TCR dependent 

differentiation of effector CD4+ T cells including Thl, Th2, Thl7 and IL-lOTreg.

The data that we present in this thesis points to a major role of the TRIM family 

of proteins in the innate immune responses to viruses however, our study also opens 

new possibilities to study TRIM proteins as they may also be involved in broader 

responses to pathogens and may also be involved in adaptive immune responses.
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Figure 6.1. Different functions of TRIM19/PML upon induction by viruses via type-I 
IFNs.
Schematic representation of the mechanism of TRIM19/PML up-regulation of expression 
upon viral infection via type-II FNs and the many cellular functions attributed to TRIM 19 
(PML). Upon viral infection, viral products (ssRNA, dsRNA, CpG) stimulate TLRs to 
induce type-I IFNs production by activating a set of transcription factors that may differ 
between cell types (NF-kB, IRF-3, IRF-5, IRF-7, IRF-1, IRF-8, discussed in Section 
1.5.1.5). Type-I IFNs (and also IFNy), then bind to their receptors to induce expression of 
TRIM 19 by activating STATs, IRF-8, IRF-9, IRF-1. TRIM19/PML then can exert its 
functions which include: interactions with other proteins like SP100 and DAXX to form 
nuclear bodies (NB) which are important in regulation of transcription, storage of proteins, 
sumoylation and anti-viral functions. TRIM19/PML can regulate chromatin remodelling of 
the MHC-1 locus, or inhibit replication of viruses like Influenza, Thogoto virus and others. 
TRIM19 can also negatively regulate IFNy signalling by inhibiting STAT1 transcriptional 
activity. The cytoplasmic isoform of TRIM 19 (cPML) binds to the TGFP receptor and serves 
as an adaptor molecule to recruit SARA and SMAD2/3 and initiate TGFP signalling.
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