183 research outputs found

    Extreme Precipitation Events in Summer in the Iberian Peninsula and Its Relationship With Atmospheric Rivers

    Get PDF
    This study identifies and characterizes the importance of the Atmospheric Rivers in the extreme precipitation episodes that strike the Iberian Peninsula and Portugal during the extended summer months (April to September) between 1950 and 2007. The extreme precipitation days are ranked taking into account a daily gridded precipitation database for the Iberian Peninsula at a 0.2° resolution. The ranking is based on the magnitude of the extreme precipitation days considering not only on the area affected above the 95th climatological percentile but also by the precipitation intensity within the anomalous area. The Atmospheric Rivers detection scheme is used for the North Atlantic Ocean basin that allows the identification of the persistent Atmospheric Rivers that impact the Iberian Peninsula for the extended summer months. It is shown, that there is a relationship between the Atmospheric Rivers and the extreme precipitation days in Portugal especially during the transition months of April, May and September. On the contrary when analysing the entire Iberia Peninsula the impact of ARs is considerably reduced. Moreover, the impacts of the Atmospheric Rivers is considerably higher for the top ranked events in Portugal but decreases when considering less intense extreme precipitation days

    Evaluacion de la probabilidad de ocurrencia de fuegos en rodales de Pinus pinaster Ait en Portugal

    Get PDF
    Maritime pine (Pinus pinaster Ait.) is an important conifer from the western Mediterranean Basin extending over 22% of the forest area in Portugal. In the last three decades nearly 4% of Maritime pine area has been burned by wildfires. Yet no wildfire occurrence probability models are available and forest and fire management planning activities are thus carried out mostly independently of each other. This paper presents research to address this gap. Specifically, it presents a model to assess wildfire occurrence probability in regular and pure Maritime pine stands in Portugal. Emphasis was in developing a model based on easily available inventory data so that it might be useful to forest managers. For that purpose, data from the last two Portuguese National Forest Inventories (NFI) and data from wildfire perimeters in the years from 1998 to 2004 and from 2006 to 2007 were used. A binary logistic regression model was build using biometric data from the NFL Biometric data included indicators that might be changed by operations prescribed in forest planning. Results showed that the probability of wildfire occurrence in a stand increases in stand located at steeper slopes and with high shrubs load while it decreases with precipitation and with stand basal area. These results are instrumental for assessing the impact of forest management options on wildfire probability thus helping forest managers to reduce the risk of wildfire

    Impacts of urbanization on insect herbivory and plant defences in oak trees

    Get PDF
    Systematic comparisons of species interactions in urban versus rural environments can improve our understanding of shifts in ecological processes due to urbanization. However, such studies are relatively uncommon and the mechanisms driving urbanization effects on species interactions (e.g. between plants and insect herbivores) remain elusive. Here we investigated the effects of urbanization on leaf herbivory by insect chewers and miners associated with the English oak Quercus robur by sampling trees in rural and urban areas throughout most of the latitudinal distribution of this species. In performing these comparisons, we also controlled for the size of the urban areas (18 cities) and gathered data on CO emissions. In addition, we assessed whether urbanization affected leaf chemical defences (phenolic compounds) and nutritional traits (phosphorus and nitrogen), and whether such changes correlated with herbivory levels. Urbanization significantly reduced leaf chewer damage but did not affect leaf miners. In addition, we found that leaves from urban locations had lower levels of chemical defences (condensed and hydrolysable tannins) and higher levels of nutrients (nitrogen and phosphorus) compared to leaves in rural locations. The magnitude of urbanization effects on herbivory and leaf defences was not contingent upon city size. Importantly, while the effects of urbanization on chemical defences were associated with CO emissions, changes in leaf chewer damage were not associated with either leaf traits or CO levels. These results suggest that effects of urbanization on herbivory occur through mechanisms other than changes in the plant traits measured here. Overall, our simultaneous assessment of insect herbivory, plant traits and abiotic correlates advances our understanding of the main drivers of urbanization effects on plant–herbivore interactions.This research was financially supported by a Spanish National Research Grant (AGL2015-70748-R), a Regional Government of Galicia Grant (IN607D 2016/001) and the Ramón y Cajal Research Programme (RYC-2013-13230).Peer reviewe

    Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach

    Get PDF
    The preparation and characterization of biocomposite materials with improved properties based on poly(lactic acid) (PLA) and bacterial cellulose, and, for comparative purposes, vegetal cellulose fibers, both in their pristine form or after acetylation, is reported. The composite materials were obtained through the simple and green mechanical compounding of a PLA matrix and bacterial cellulose nanofibrils (or vegetable fibers), and were characterized by TGA, DSC, tensile assays, DMA, SEM and water uptake. The bionanocomposites obtained from PLA and acetylated bacterial cellulose were particularly interesting, given the considerable improvement in thermal and mechanical properties, as evidenced by the significant increase in both elastic and Young moduli, and in the tensile strength (increments of about 100, 40 and 25%, respectively) at very low nanofiller loadings (up to 6%). These nanocomposites also showed low hygroscopicity and considerable transparency, features reported here for the first time.FCT - PTDC/QUI/68472/2006FCT - SFRH/BPD/63250/2009FCT - L. C. T/ E. T.FCT-CAPES 2009FCT - National Program for ScientiïŹc Re-equipmentRede/1509/RME/2005REEQ/515/CTM/200

    Long non-coding RNA signatures in the Ileum and Colon of Crohn’s disease patients and effect of Anti-TNF-α treatment on their modulation

    Full text link
    Biological therapies only benefit one-third of patients with Crohn’s disease (CD). For this reason, a deeper understanding of the mechanisms by which biologics elicit their effect on intestinal mucosa is needed. Increasing evidence points toward the involvement of long noncoding RNAs (lncRNAs) in the pathogenesis of CD, although their role remains poorly studied. We aimed to characterize lncRNA profiles in the ileum and colon from CD patients and evaluate the effect of anti-TNF-α treatment on their transcription. Terminal ileum and left colon samples from 30 patients (active CD = 10, quiescent CD = 10, and healthy controls (HCs) = 10) were collected for RNA-seq. The patients were classified according to endoscopic activity. Furthermore, biopsies were cultured with infliximab, and their transcriptome was determined by Illumina gene expression array. A total of 678 differentially expressed lncRNAs between the terminal ileum and left colon were identified in HCs, 438 in patients with quiescent CD, and 468 in patients with active CD. Additionally, we identified three new lncRNAs in the ileum associated with CD activity. No differences were observed when comparing the effect of infliximab according to intestinal location, presence of disease (CD vs. HC), and activity (active vs. quiescent). The expression profiles of lncRNAs are associated with the location of intestinal tissue, being very different in the ileum and colon. The presence of CD and disease activity are associated with the differential expression of lncRNAs. No modulatory effect of infliximab has been observed in the lncRNA transcriptom

    Future Atmospheric Rivers and Impacts on Precipitation: Overview of the ARTMIP Tier 2 High‐Resolution Global Warming Experiment

    Get PDF
    Atmospheric rivers (ARs) are long, narrow synoptic scale weather features important for Earth’s hydrological cycle typically transporting water vapor poleward, delivering precipitation important for local climates. Understanding ARs in a warming climate is problematic because the AR response to climate change is tied to how the feature is defined. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) provides insights into this problem by comparing 16 atmospheric river detection tools (ARDTs) to a common data set consisting of high resolution climate change simulations from a global atmospheric general circulation model. ARDTs mostly show increases in frequency and intensity, but the scale of the response is largely dependent on algorithmic criteria. Across ARDTs, bulk characteristics suggest intensity and spatial footprint are inversely correlated, and most focus regions experience increases in precipitation volume coming from extreme ARs. The spread of the AR precipitation response under climate change is large and dependent on ARDT selection

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    • 

    corecore