326 research outputs found

    Development of honeybee colonies under protein diets

    Get PDF
    O objetivo deste trabalho foi avaliar o desempenho de produtos regionais do Nordeste na alimentação de colônias de abelhas (Apis mellifera), em um período de escassez de floradas. Foram fornecidas dietas às abelhas, contendo 20% de proteína bruta, à base de feno de mandioca (Manihot esculenta) e farinha de vagem de algaroba (Prosopis juliflora), feno de mandioca e farelo de babaçu (Orbygnia martiana), farelo de babaçu e Purilac (sucedâneo para bezerros da marca Purina) e pólen apícola de Palmae. As colônias foram analisadas quanto ao peso e às áreas de alimento e cria. Não foi observada diferença significativa entre os tratamentos em relação às áreas de cria. Apesar de a pasta com pólen ser a mais consumida, este alimento mostrou conversão alimentar menor do que as demais dietas fornecidas. As colônias que receberam pasta de feno de mandioca com farelo de babaçu tiveram maior peso final. Todos os alimentos mostraram-se eficientes na manutenção das colônias.The objective of this work was to evaluate the efficiency of some regional products of Brazil Northeast to feed Apis mellifera colonies. Diets with 20% of crude protein made of cassava hay (Manihot esculenta) and mesquite pod meal (Prosopis juliflora), cassava hay and babassu bran (Orbygnia martiana), babassu bran and Purilac (succedaneous for calfskin from Purina) and Palmae pollen were offered to the honeybees. Colonies were evaluated for weight gain, store area and brood area. There was no significant difference among the treatments in relation to the brood areas. Pollen treatment showed the highest intake but also showed the lowest food conversion. Beehives that received diet with cassava hay and babassu flour showed greater final weight gain. All diets were efficient in the maintenance of the colonies

    Biocompatibility of Doped Semiconductors Nanocrystals and Nanocomposites

    Get PDF
    Exposure of humans and environment to nanocrystals are inevitable, and nanotoxicological analyses are a requirement. The wide variety of nanocrystals with different applications is increasing, and characterization of their effects after exposure includes their potential toxicity and uses. This review summarizes the characterization of doped nanocrystals and nanocomposites, Ca-doped ZnO, Ag- and Eu-doped ZnO and Ni-doped ZnO NCs, their biocompatibility and applications. This review uncovers how these nanocrystals present desirable biocompatible properties, which can be useful as antitumoral and antimicrobial inducing agents, which differ markedly from toxic properties observed in other general nanocrystals

    A experiência da Rede de Agroecologia do Leste Paulista (SP) – Brasil

    Get PDF
    A Rede de Agroecologia do Leste Paulista (SP) – Brasil foi criada em 2005 a partir de uma articulação entre Agricultores(as) Familiares da região e de um conjunto de organizações governamentais e não governamentais de ensino, pesquisa e extensão com o objetivo de contribuir para o desenvolvimento local sustentável fundamentado nos princípios da Agroecologia. Para isso, as estratégias desenvolvidas pela Rede ao longo desses dez anos foram pautadas por processos participativos voltados à construção do conhecimento e da transição agroecológica de unidades familiares de produção numa perspectiva territorial. Dentre as diferentes atividades de interação e de construção do conhecimento agroecológico, destaca-se o trabalho desenvolvido em Unidades de Referência (UR) implantadas, conduzidas e monitoradas em áreas dos próprios Agricultores Familiares. O presente trabalho aborda os aspectos positivos (fortalezas e potencialidades) e negativos (debilidades e resistências) desse processo, além de apontar alguns caminhos para o fortalecimento e consolidação da referida Rede.Eje: B6 Desarrollo rural, movimientos sociales, Estado y agroecología (Relatos de experiencias)Facultad de Ciencias Agrarias y Forestale

    Microbiomes of Velloziaceae from phosphorus-impoverished soils of the campos rupestres, a biodiversity hotspot

    Get PDF
    The rocky, seasonally-dry and nutrient-impoverished soils of the Brazilian campos rupestres impose severe growth-limiting conditions on plants. Species of a dominant plant family, Velloziaceae, are highly specialized to low-nutrient conditions and seasonal water availability of this environment, where phosphorus (P) is the key limiting nutrient. Despite plant-microbe associations playing critical roles in stressful ecosystems, the contribution of these interactions in the campos rupestres remains poorly studied. Here we present the first microbiome data of Velloziaceae spp. thriving in contrasting substrates of campos rupestres. We assessed the microbiomes of Vellozia epidendroides, which occupies shallow patches of soil, and Barbacenia macrantha, growing on exposed rocks. The prokaryotic and fungal profiles were assessed by rRNA barcode sequencing of epiphytic and endophytic compartments of roots, stems, leaves and surrounding soil/rocks. We also generated root and substrate (rock/soil)-associated metagenomes of each plant species. We foresee that these data will contribute to decipher how the microbiome contributes to plant functioning in the campos rupestres, and to unravel new strategies for improved crop productivity in stressful environments6COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP88881.068071/2014-012016/23218-0Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2016/23218-0]; U.S. Department of Energy Joint Genome Institute (DOE-JGI)United States Department of Energy (DOE) [CSP 503222]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)CAPES [88881.068071/2014-01]; FAPESPFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2018/04240-0]; CAPESCAPES; Office of Science of the U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC02-05CH11231

    II Diretriz Brasileira de Transplante Cardíaco

    Get PDF
    Universidade de São Paulo Faculdade de Medicina Hospital das ClínicasIIHospital de Messejana Dr. Carlos Alberto Studart GomesUniversidade Federal de São Paulo (UNIFESP) Escola Paulista de MedicinaInstituto Dante Pazzanese de CardiologiaUniversidade Federal de Minas Gerais Hospital das ClínicasFaculdade de Medicina de São José do Rio PretoPontifícia Universidade Católica do ParanáIHospital Israelita Albert EinsteinInstituto Nacional de Cardiologia, Fundação Universitária do Rio Grande do Sul Instituto de CardiologiaReal e Benemérita Sociedade de Beneficência Portuguesa, São PauloHospital Pró-Cardíaco do Rio de JaneiroSanta Casa do Rio de JaneiroUNIFESP, EPMSciEL

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
    corecore