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Microbiomes of Velloziaceae from 
phosphorus-impoverished soils of 
the campos rupestres, a biodiversity 
hotspot
antonio Pedro Camargo  1,2,3, Rafael Soares Correa de Souza  1,2,3,  
Patrícia de Britto Costa4,7, Isabel Rodrigues Gerhardt1,3,5, Ricardo augusto Dante1,3,5, 
Grazielle Sales teodoro6, anna abrahão  4,7, Hans Lambers  7, 
Marcelo Falsarella Carazzolle2, Marcel Huntemann  8, alicia Clum8, Brian Foster8, 
Bryce Foster8, Simon Roux  8, Krishnaveni Palaniappan8, Neha Varghese8, 
Supratim Mukherjee  8, t. B. K. Reddy8, Chris Daum8, alex Copeland8, I.-Min a. Chen8, 
Natalia N. Ivanova  8, Nikos C. Kyrpides8, Christa Pennacchio8, Emiley a. Eloe-Fadrosh  8, 
Paulo arruda1,2,3 & Rafael Silva Oliveira 4,7

the rocky, seasonally-dry and nutrient-impoverished soils of the Brazilian campos rupestres impose 
severe growth-limiting conditions on plants. Species of a dominant plant family, Velloziaceae, are 
highly specialized to low-nutrient conditions and seasonal water availability of this environment, 
where phosphorus (P) is the key limiting nutrient. Despite plant-microbe associations playing critical 
roles in stressful ecosystems, the contribution of these interactions in the campos rupestres remains 
poorly studied. Here we present the first microbiome data of Velloziaceae spp. thriving in contrasting 
substrates of campos rupestres. We assessed the microbiomes of Vellozia epidendroides, which occupies 
shallow patches of soil, and Barbacenia macrantha, growing on exposed rocks. the prokaryotic and 
fungal profiles were assessed by rRNA barcode sequencing of epiphytic and endophytic compartments 
of roots, stems, leaves and surrounding soil/rocks. We also generated root and substrate (rock/soil)-
associated metagenomes of each plant species. We foresee that these data will contribute to decipher 
how the microbiome contributes to plant functioning in the campos rupestres, and to unravel new 
strategies for improved crop productivity in stressful environments.

Background & Summary
The Brazilian campos rupestres are an ecoregion located on the rocky outcrops of central and eastern regions of 
Brazil (Fig. 1a)1. Most campos rupestres occur along the Espinhaço range, a Proterozoic Quartzite formation, with 
slow-disintegrating parent material2. Despite containing some of the world’s most P-impoverished soils3, the 
campos rupestres are a biodiversity hotspot that harbors exceptional diversity and endemism. Even though they 
occupy less than 1% of the Brazilian land area, the campos rupestres host more than five thousand vascular plant 
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species, over 40% of which are endemic to this ecosystem4. Although several ecophysiological studies on plant 
species of campos rupestres have been conducted, the contribution of microbial communities to plant survival in 
such stressful conditions remains elusive.

A dominant monocot plant family, Velloziaceae, displays remarkable success in this environment. Members 
of this group display strategies to cope with extremely nutrient-poor soils, such as efficient P remobilization from 
senescent leaves, the formation of rhizosheaths and vellozioid roots, which exhibit root-mediated carboxylate 
secretion that enhances nutrient uptake5,6. These adaptations allow Velloziaceae to grow on P-impoverished sub-
strates with different properties, such as exposed rocks (Fig. 1b) and shallow patches of soil (Fig. 1c).

Fig. 1 The Brazilian campos rupestres are rocky seasonally-dry environments with some of the world’s most 
phosphorus (P)-impoverished soils. (a) The study was conducted in a campo rupestre site in the Brazilian state 
of Minas Gerais, as shown on the map (left). Campo rupestre areas are shown in dark gray. The sites where 
plants of each Velloziaceae species were collected are indicated in the aerial image of the study area (right). (b) 
Barbacenia macrantha was found in a rocky area (left), where it grows over exposed rocks (right). (c) Vellozia 
epidendroides specimens were collected in an area (left) where they grow in patches of shallow soil (left).
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Association with mycorrhizal fungi is one of the most ancient, widespread and important symbiosis for uptake 
of P and other nutrients, being found in over 80% of vascular species7. However, it has been suggested that in 
severely P-impoverished soils, such as those in the campos rupestres, the costs of maintaining mycorrhizal associ-
ations exceed their nutrient uptake benefits8. Consequently, most plants growing on the campos rupestres do not 
exhibit mycorrhizal association3,5. While the absence of mycorrhizal fungi raises the question as to whether other 
microbial associations are beneficial, to our knowledge no previous study has investigated the extent of phyloge-
netic and functional diversity of microbial communities in the campos rupestres. As a result, the functional role 
of the microbial communities associated with native species thriving in different campos rupestres environments 
remains obscure.

Aiming to uncover the composition and functional role of Velloziaceae-associated microbial communities, 
we surveyed the microbiota associated with two Velloziaceae species that thrive in two nutrient-impoverished 
(Tables 1 and S1) substrates: Barbacenia macrantha Lem and Vellozia epidendroides Mart. ex Schult. & Schult. f., 
growing on rocks (Fig. 1b) and in soil patches (Fig. 1c), respectively. Rock and soil substrates surrounding the 
individuals, and epiphytic and endophytic compartments of their roots, stems and leaves (Fig. 2a) were sampled 
for profiling the microbial community through sequencing of the 16S V4 rRNA region, for prokaryotes, and ITS2, 
for fungi (Fig. 2b). We assessed the genic landscape through metagenome sequencing of substrate and rhizos-
phere communities (Fig. 2c).

High-throughput sequencing of DNA fragments amplified from the 16S V4 and ITS2 regions was pro-
duced for 84 16S V4 and 81 ITS2 samples9, with median read number of 123,496 and 199,968, respectively 
(Supplementary Table S2). Processing of these data retrieved 28,582 and 10,981 amplicon sequence variants 
(ASVs) from the 16S V4 and ITS2 regions, respectively. Analysis of the ASV abundance revealed that, for both 
bacteria and fungi, community diversity was tied to the environment (Fig. 3). The prokaryotic diversity (Fig. 3a) 
was generally higher than the fungal diversity (Fig. 3b). We also found that most of the 16S V4 amplicons were 
assigned to at least one of the 22 identified prokaryotic phyla (Fig. 4a), while a substantial fraction of the ITS2 
sequences could not be classified. In the case of ITS2, a single phylum, among the 13 identified phyla, encom-
passed most of the sequenced amplicons (Fig. 4b).

Shotgun sequencing of total DNA extracted from microbial samples of rhizosphere and substrate generated 
a total of 192 GB of sequencing data. The samples were individually assembled, producing 12 metagenomes with 
a median assembly length of 918,800,525 bp, a median scaffold number of 2,121,680 bp and a median N50 of 
536,506 bp (Table 2). Annotation of those metagenomes retrieved a median number of 9,907 noncoding genes and 
2,544,611.5 protein-coding genes. The comparison between metabolic profiles of communities associated with 
the substrates and the rhizospheres of the two plants revealed major differences between the two environments 
(Supplementary Fig. S1). We found that 271 and 104, out of 1,403, MetaCyc pathways are differentially abundant 
(FDR < 0.05) between soil and rock-associated and between V. epidendroides and B. macrantha-associated com-
munities, respectively (Supplementary Fig. S2).

These data are the result of the first effort to explore microbiomes of the campos rupestres and have the poten-
tial to uncover novel functional roles of plant-associated microbial community. We expected it to be relevant to 
both the understanding of the role of microorganisms in plant survival and the development of novel strategies to 
improve crop productivity in stressful environments.

Methods
Study site characteristics and plant species. Plant samples were collected on March, 2017 in “Reserva 
Natural Particular Vellozia” (19°16′55.8″S 43°35′34.9″W and 19°16′47.1″S 43°35′32.0″W for V. epidendroides and 
B. macrantha, respectively; Fig. 1a), a private natural reserve adjacent to the Serra do Cipó National Park, Minas 
Gerais, Brazil. This site is located in the Espinhaço range, a rupestrian habitat characterized by rock outcrops and 
sandy soils with low availability of nutrients, especially P4, which was ascertained by physicochemical character-
ization of rock and soil samples (Tables 1 and S1). This site was chosen because of the occurrence of Velloziaceae 
species in two distinct microhabitats, B. macrantha growing on exposed rocks (Fig. 1b) and V. epidendroides 
growing in patches of shallow soil (Fig. 1c).

Sample collection. To assess the composition and structure of microbial communities associated with epi-
phytic and endophytic compartments of V. epidendroides and B. macrantha, we sampled roots, stems, leaves 
and surrounding soil/rocks from six individuals of each plant species in March of 2017 in a total of 84 samples 
(Supplementary Tables S3 and S4). For each environment, we defined an area of approximately 200 m2 within 
which we collected plant and soil/rock materials. To make sure that we would sample plants that were represent-
ative of these environments, we defined the boundaries so that the areas were as visually consistent as possible. 

Substrate pH Organic matter (g/kg) N (mg/kg) P (mg/kg) K (mg/kg) Ca (mg/kg) Mg (mg/kg) S (mg/kg)

Soil 3.55 (0.06) 39.90 (5.92) 900.00 (270.80) 4.15 (2.52) 34.32 (9.07) 129.00 (17.81) 14.18 (0.51) 4.10 (2.25)

Rock 4.74 (0.11) 6.67 (0.11) 60.00 (54.77) 1.21 (0.60) 47.19 (20.41) 66.53 (8.55) 8.08 (0.27) 2.36 (2.02)

Table 1. Physicochemical characterization of soil and rock samples from the study sites of Vellozia 
epidendroides and Barbacenia macrantha. pH and concentrations of organic matter and macronutrients (N, P, K, 
Ca, Mg, and S) of soil and rock are shown. Values correspond to the means of five samples. Standard deviations 
are in parenthesis.

https://doi.org/10.1038/s41597-019-0141-3
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During the sampling process, the chosen specimens of each plant species were randomly assigned sample num-
bers from R1 to R6.

V. epidendroides plants were sampled from a large population in the shallow soil area (Fig. 1a,c). Individuals 
similar in height, number of leaves and number of tillers were chosen. Each plant was excavated from the soil by 
inserting an ethanol-sterilized shovel to a depth of 15 cm in a circular perimeter with a 20 cm radius around the 
plant. The entire plant was lifted and placed in a sterile, labeled container. The leaves were hand detached from the 
stem, stored in plastic bags and placed on ice for further processing. The stem was separated from the roots using 
ethanol-sterilized pruning scissors and kept inside plastic bags on ice. Roots were manually shaken to remove 
large soil aggregates and stored in the same manner.

B. macrantha plants were sampled in a rocky slope area (Fig. 1a,b) and individuals were chosen based on 
the same criteria used for V. epidendroides. Plants were removed by breaking the surrounding rock with an 
ethanol-sterilized hammer and chisel until roots were exposed. Pieces of rocks were collected in plastic bags and 
placed on ice. Before microbiome sampling, rocks were crushed to small pieces. Plants harvested from rocks had 
their leaves, stems and roots sampled and stored on ice using the same procedures described for V. epidendroides.

Fig. 2 Overview of the workflows used to obtain and process the data. (a) Six individuals of both Vellozia 
epidendroides and Barbacenia macrantha were collected from their natural habitats and individually processed 
to assess the microbiomes from seven different environments through extraction of microbial DNA. The DNA 
extracted from three samples of four distinct communities (B. macrantha substrate, B. macrantha rhizosphere, 
V. epidendroides substrate and V. epidendroides rhizosphere), totaling 12 samples, was sequenced on an Illumina 
HiSeq platform to generate data for the metagenomic assembly. DNA from all six samples of all the assessed 
communities, totaling 84 samples, was used to generate 16S V4 and ITS2 amplicons, which were sequenced 
on an Illumina MiSeq platform. BS = bulk soil, ER = exposed rock, RX = rhizosphere, RN = endophytic root, 
SX = exophytic stem, SN = endophytic stem, LX = epiphytic leaf, LN = endophytic leaf. (b) The microbial 
community analysis started with the removal of primer sequences from the sequenced amplicons. Next, reads 
were denoised using the DADA2 pipeline, and the identified ASVs were assigned to bacterial and fungal 
taxa though comparison with the SILVA and UNITE databases, respectively. After filtering out ASVs from 
mitochondria and chloroplasts and low-prevalence amplicons, the phyloseq and vegan packages were used 
to analyze community composition. (c) The metagenomes were assembled using SPAdes software and then 
annotated using the standard DOE-JGI MGAP v.4 annotation pipeline. In the structural annotation step, the 
metagenomes were surveyed to identify CRISPRs, tRNA genes, rRNA genes, other classes of ncRNA genes and 
protein-coding genes. Next, the protein-coding sequences were functionally annotated and assigned to ortholog 
groups, metabolic pathways, chemical reactions and protein families.
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Microbes were collected from plant organ samples by methods adapted from a previously described proto-
col10. Briefly, the epiphytic microbial community was obtained by washing the root, stem and leaf samples in 
sterile ice-cold 1× PBS (7 mM Na2HPO4, 3 mM NaH2PO4 and pH 7.0) with 0.05% (v/v) Tween 20 buffer solution. 
The same washing procedure was applied to grinded pieces of rocks to assess microbial communities of exposed 
rocks. Soil samples were directly submitted to DNA extraction without further processing. The washing solu-
tion was centrifuged at 3,000 × g for 15 min at 4 °C, and the resulting pellet, defined as the sample containing 
enriched epiphytic microbial communities, was frozen in liquid nitrogen and stored at −80 °C. The washed plant 
organs were subjected to a second washing step to remove the remaining buffer solution. Plant organs were cut 
and blended in ice-cold 1× PBS buffer solution. The blended buffer was centrifuged at 200 g for 5 min at 4 °C to 
remove particulates and cell debris. The supernatant was then centrifuged at 3,000 × g for 15 min at 4 °C. The 
resulting pellet, defined as the sample containing an enriched endophytic microbial community, was frozen in 
liquid nitrogen and stored at −80 °C.

We also sampled soil and rock material for physicochemical characterization. The samples were obtained in 
the original study areas in June, 2018. Extraction of the material was done within 20 cm of a V. epidendroides or B. 
macrantha individual, following the same sampling procedures used for microbiome assessment.

Physicochemical characterization of soil and rock samples. To prepare samples for physicochemical 
characterization, rocks were first ground to fine particles. Next, pulverized rock and soil samples were individ-
ually air-dried and sieved (<2 mm) to remove large particles and organic remains. The nutrient content and 
physical properties of the processed material were determined at the Agronomy Institute (IAC), in Campinas, 
following standardized methods11.

Briefly, phosphorus (P), calcium (Ca), magnesium (Mg), and potassium (K) were extracted using ion exchange 
resins12 and quantified by colorimetry (P), atomic absorption spectrophotometry (Ca and Mg), and flame pho-
tometry (K). Aluminium (Al) was extracted with potassium chloride solution and quantified using titration. 
Sodium (Na) was extracted with ammonium acetate solution (pH 7.0) and measured by flame photometry. Boron 
(B) was extracted with hot water and determined through spectrophotometry. Copper (Cu), iron (Fe), manganese 
(Mn), zinc (Zn), cadmium (Cd), lead (Pb), chromium (Cr), and nickel (Ni) were extracted using the diethylene 

Fig. 3 Alpha diversity of the Vellozia epidendroides and Barbacenia macrantha microbiomes. Alpha diversity, 
quantified using Shannon’s equitability index, of the (a) 16S V4 and (b) ITS2 loci retrieved from several 
microbial communities associated with V. epidendroides and B. macrantha. BS = bulk soil, ER = exposed rock, 
RX = rhizosphere, RN = endophytic root, SX = exophytic stem, SN = endophytic stem, LX = epiphytic leaf, 
LN = endophytic leaf.
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triamine pentaacetic acid method13 and quantified with inductively coupled plasma optical emission spectropho-
tometry. Total nitrogen (N) was extracted and quantified using Kjeldahl method14. Organic matter content was 
determined through dichromate oxidation followed by colorimetry15. The pH was quantified in CaCl2-diluted 
(0.01 M) samples. SMP-pH and exchangeable acidity were determined by dilution of the samples in SMP buffer 
solution16. To quantify the electrical conductivity, 100 g of soil was ressuspended in 100 mL of deionized water and 
the resulting solution conductivity was measured with an electrical conductivity meter.

DNA extraction, amplicon and shotgun metagenomic sequencing. DNA was extracted from 
enriched microbial samples using a PowerSoil DNA Isolation kit (MO BIO Laboratories, Inc., Carlsbad, CA, 
USA) with minor modifications to the default protocol as previously described10. Extracted DNA quality was 
assessed by a NanoDrop spectrophotometer (Thermo Fisher Scientific Inc., MA, USA) and quantified by a Qubit 
dsDNA BR Assay Kit (Thermo Fisher Scientific Inc., MA, USA) prior to storage at −80 °C.

Library preparation and sequencing of both the rRNA gene amplicon samples and the shotgun metagenomes 
was conducted by the Department of Energy Joint Genome Institute (JGI) as part of the Community Science 
Program.

Targeted Illumina rRNA gene amplicon libraries were prepared using DOE-JGI iTag Sample Preparation 
for Illumina Sequencing to access prokaryotic and fungal community profiles. The bacterial 16S V4 
region was amplified from total DNA using 515FB (5′-GTGYCAGCMGCCGCGGTAA-3′) and 806RB 
(5′-GGACTACNVGGGTWTCTAAT-3′) primers17 with chloroplast and mitochondrial PNA blocking oligos 
for 16S endophyte samples (PNA Bio Catalog #MP01-25 and #PP01-25). The fungal ITS2 region was amplified 

Fig. 4 Community composition of the Vellozia epidendroides and Barbacenia macrantha microbiomes at 
the phylum level. Relative abundance of (a) prokaryotic and (b) fungal phyla retrieved from 16S V4 and 
ITS2 amplicon sequencing, respectively. Each column represents a single sample and samples were grouped 
according to the environment from which the communities were accessed. BS = bulk soil, ER = exposed rock, 
RX = rhizosphere, RN = endophytic root, SX = exophytic stem, SN = endophytic stem, LX = epiphytic leaf, 
LN = endophytic leaf.

https://doi.org/10.1038/s41597-019-0141-3
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using ITS9_Fwd (5′-GAACGCAGCRAAIIGYGA-3′) and ITS4_Rev (5′-TCCTCCGCTTATTGATATGC-3′) 
primers18. Both forward and reverse primers contained Illumina dual index sequencing adaptors and one 12 bp 
index. Forward primers contained a spacer sequence of five 5′ degenerate nucleotides (N), and reverse primers 
contained zero to three 5′ frameshifting nucleotides that provide sequence diversity at the start of sequencing 
read 119. PCR assays were performed with the 5PRIME HotMaster Mix (Quanta BioSciences, Inc., MD, USA). 
Sequencing of the flowcell was performed on the Illumina MiSeq sequencer using MiSeq Reagent kits and fol-
lowing a 2 × 300 nt indexed run protocol. We note that the samples BM_ITS2_LN_R12 and BM_ITS2_SN_R11 
failed to yield amplicons and, thus, are absent from our data.

Genomic DNA of root and substrate (bulk soil or exposed rocks) microbial communities from three indi-
viduals (samples numbered from R1 to R3) of each plant species was used to generate the shotgun metagenome 
sequencing data. A total of 10 ng of DNA was sheared to 300 bp using a Covaris LE220 (Covaris, MA, USA) 
and size selected using SPRI beads (Beckman Coulter, CA, USA). The fragments were treated with end-repair, 
A-tailing, and ligation of Illumina compatible adapters (Integrated DNA Technologies, Inc., IA, USA) using a 
KAPA-Illumina library creation kit (Kapa Biosystems, MA, USA), and a 5 cycle PCR was used to enrich for the 
final library. The libraries were prepared for sequencing on the Illumina HiSeq sequencing platform utilizing a 
TruSeq Rapid paired-end cluster kit, v4. Sequencing of the flowcell was performed on the Illumina HiSeq 2500 
sequencer using HiSeq TruSeq SBS sequencing kits, following a 2 × 150 nt indexed run protocol.

Amplicon sequence variant inference. Raw amplicon sequencing data from V. epidendroides and B. 
macrantha associated communities were retrieved from the DOE-JGI Genome Portal9. The paired-end FASTQ 
files were then deinterleaved using fqtools (version 2.0)20 to generate pairs of R1 and R2 FASTQ files which were 
then inspected using FastQC (version 0.11.7)21. Next, the primer sequences were trimmed out of the reads using 
cutadapt (version 1.16)22 keeping only the read pairs that contained the complete sequences of both the forward 
primer in the R1 read and the reverse primer in the R2 read. Primer sequences with insertions, deletions or 
error rates greater than 20% were removed. A second quality check was performed with FastQC to obtain Phred 
score distributions which were used to determine the trimming length that was used in the subsequent variant 
inference step. FastQC and cutadapt results were summarized in an HTML report with MultiQC (version 1.6)23.

Vellozia epidendroides Barbacenia macrantha

Bulk Soil Rhizosphere Exposed Rock Rhizosphere

BS_R01 BS_R02 BS_R03 RX_R1 RX_R2 RX_R3 ER_R07 ER_R08 ER_R09 RX_R7 RX_R8 RX_R9

Assembly 
length (bp) 860,879,893 2,268,702 617,499,457 676,518,752 976,721,157 729,110,140 600,610,973 1,214,420,372 1,238,859,002 1,079,199,799 1,433,396,097 1,622,069,667

Number of 
contigs 1,972,903 2,270,457 1,351,797 1,486,891 1,645,436 1,645,662 1,377,103 2,326,200 2,637,801 2,492,579 2,699,276 2,952,973

N50 614,578 598,284 407,288 452,936 317,068 503,998 432,757 569,015 717,185 61,759 628,284 673,204

L50 406 490 432 287 645 416 408 516 441 405 520 551

Max scaffold 
length (bp) 59,246 1,680,496 258,893 27,505 662,532 1,657,979 327,896 651,618 2,357,837 61,759 2,793,540 1,186,326

Genes

  RNA genes 8,700 10,837 6,182 6,561 9,412 8,158 7,331 11,198 13,860 10,402 13,115 14,833

     rRNA genes 2,332 2,630 1,866 1,809 1,815 2,368 2,019 2,360 3,399 2,706 2,488 3,100

    5S rRNA 146 252 133 137 252 172 151 249 294 212 264 310

    16S rRNA 711 786 533 545 540 699 657 672 1,027 798 707 945

    18S rRNA 32 40 54 51 54 42 22 84 68 67 84 69

    23S rRNA 1,366 1,477 1,031 987 870 1,394 1,155 1,214 1,891 1,514 1,300 1,665

    28S rRNA 77 75 115 89 99 61 34 141 119 115 133 111

     tRNA genes 6,368 8,207 4,316 4,752 7,597 5,790 5,312 8,838 10,461 7,696 10,627 11,733

   Protein 
coding genes 2,297,228 2,791,995 1,590,322 1,754,025 2,150,110 1,926,163 1,628,300 2,880,790 3,166,526 2,901,223 3,366,379 3,764,853

     with Product 
Name 2,305,928 2,802,832 1,596,504 1,760,586 2,159,522 1,934,321 1,635,631 2,891,988 3,180,386 2,911,625 3,379,494 3,779,686

    with COG 1,191,680 1,496,157 825,877 942,870 1,186,733 1,014,644 874,346 1,446,673 1,606,760 1,515,597 1,722,337 2,006,246

    with Pfam 1,109,275 1,412,963 768,892 875,344 1,126,410 943,934 805,481 1,396,975 1,521,778 1,418,186 1,659,192 1,927,535

    with KO 913,196 1,137,348 621,315 720,502 888,464 773,464 675,421 1,076,987 1,224,775 1,174,302 1,300,850 1,519,429

    with Enzyme 550,718 672,962 377,026 431,594 511,776 472,682 410,088 657,136 753,442 715,698 788,012 917,051

     with 
MetaCyc 351,479 427,878 241,918 276,579 321,172 304,400 261,797 422,831 483,869 459,140 508,562 585,951

    with KEGG 569,005 700,632 386,214 449,908 539,886 484,161 423,557 663,022 763,289 732,531 804,817 940,101

COG clusters 4,106 4,227 4,002 4,075 4,182 4,133 4,115 4,281 4,344 4,240 4,327 4,375

Pfam clusters 6,383 7,003 5,946 6,250 6,890 6,355 6,261 7,400 7,263 7,030 7,870 7,445

CRISPR count 375 350 233 272 280 308 220 741 666 502 904 755

Table 2. Metagenome assembly and annotation statistics. BS = bulk soil, ER = exposed rock.
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Amplicon sequence variants (ASVs) of the 16S and ITS libraries were obtained separately using DADA2’s 
denoising algorithm (version 1.6.0)24. First, the R1 and R2 reads of the 16S samples were truncated to 245 bp 
and 180 bp, respectively. Reads from ITS samples were not truncated to a fixed length, because this region has 
significant length variation across genomes. Subsequently, reads were filtered to remove the reads with more than 
two expected errors and ambiguous bases. Parameters of the error models were obtained by alternating sample 
inference with parameter estimation until convergence was achieved. The error models and dereplicated reads 
pooled from all samples were used as input for the dada function to obtain denoised sequences from R1 and R2 
reads. Pairs of R1 and R2 reads with a minimum overlap length of 16 bp and no mismatches were then merged 
to obtain ASVs. Next, PCR chimeras identified with the consensus method were filtered out. Finally, 16S AVSs 
shorter than 246 bp and longer than 260 bp and ITS ASVs shorter than 50 bp were removed.

Taxonomic assignment, prevalence filtering and community analysis. Taxonomic assignment of 
the 16S and ITS ASVs was performed with the DADA2 implementation of the naive Bayesian classifier method25. 
The 16S training dataset consisted of taxonomically assigned sequences from the SILVA database release 13226,27, 
while the ITS training dataset comprised the general FASTA release of the UNITE database version 7.228,29. 
Minimum bootstrap confidence was set to 50. Exact matching of 16S ASVs to database sequences was used to 
assign species to these fragments. 16S ASV sequences that were assigned to mitochondria or chloroplast taxa were 
filtered out.

To remove spurious ASVs, prevalence filtering30 was performed using the phyloseq (version 1.22.3)31 package. 
Prevalence was defined as the number of samples in which a given ASV’s abundance was at least 0.01% of the 
sample read count. ASVs with a prevalence lower than 5% of the number of samples were discarded. The number 
of reads kept in each sample throughout the steps of sample inference, taxonomic assignment and prevalence 
filtering can be found in Supplementary Tables S3 and S4 for 16S and ITS, respectively. Finally, the vegan package 
(version 2.5–3)32 was used to calculate Shannon’s entropy33 for samples (Fig. 3), which was then divided by the log 
of the number of ASVs to obtain Shannon’s equitability index.

Metagenome assembly and annotation. Each of the 12 shotgun sequencing libraries was assembled 
independently using SPAdes software (version 3.11.1)34 in the metagenome mode (--meta), using multiple 
k-mer sizes (-k 33, 55, 77, 99, 127). Next, the assemblies were processed to remove scaffolds shorter than 150 bp, 
replace ambiguous nucleotides by N’s, trim trailing N’s and filter out low-complexity sequences using DUST35. 
Contamination from phage PhiX sequences was identified and removed by comparing metagenomic sequences 
to the PhiX genome using BLASTn36. Structural and functional annotation of microbial metagenomes was then 
performed using the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4)37, as described below.

Briefly, structural annotation started with the detection of CRISPR sequences using CRT38 and PILER-CR 
(version 1.06)39. Transfer RNAs were predicted with the tRNAscan-SE tool (version 1.3.1)40 and ribosomal RNAs 
were predicted using the hmmsearch tool from the HMMER package (version 3.1b2)41 to compare metagenomic 
sequences to a set of internal hidden Markov models (HMMs) generated from an alignment of rRNA genes from 
several IMG/M bacterial genomes. Other types of noncoding RNAs were detected by comparing the metagenomic 
sequences to the Rfam 10.1 database42 using BLASTn and, subsequently, using cmsearch from the INFERNAL 
package (version 1.0.2)43. Prediction of protein-coding genes was achieved using Prodigal software (version 2.6.2)44.

To functionally annotate the metagenomes, protein-coding genes were compared with a diverse set of pub-
licly available functional databases. To assign predicted sequences to Clusters of Orthologous Groups of proteins 
(COGs), protein sequences were compared with the 2014 release of the COG position-specific scoring matrices 
(PSSMs) from the CDD database45 using RPS-BLAST. Protein-coding genes were also compared with the KEGG 
gene database (release 71.0) using UBLAST46, and the top hits were used to assign KEGG Orthology (KO) terms47. 
KO assignments were then used to designate Enzyme Commission (EC) numbers and, consequently, MetaCyc48 
reactions to coding genes. Protein family annotations were obtained by searching protein sequences against the 
Pfam (release 28.0)49 and TIGRfam (release 14.0)50 databases using the hmmscan tool from the HMMER pack-
age. InterProScan (release 48)51 was employed to assign additional protein family annotations, namely, SMART, 
PrositeProfiles, PrositePatterns and SuperFamily. IMG terms52 are assigned to genes that have at least two out of 
the top five hits of a UBLAST search of the IMG database with an IMG term. Finally, signal peptide prediction 
was performed using SignalP (version 4.1)53 software.

Metabolic distinctions between soil and rock and between V. epidendroides and B. macrantha microbial com-
munities were appraised by testing for differences in the number of genes associated with each MetaCyc pathway. 
For this purpose, we used DESeq2 (version 1.20.0)54 to normalize data with respect to library size, shrink effect 
sizes (log2 fold changes), estimate and shrink dispersions and perform a Wald test for each pathway. False dis-
covery rate values were obtained by applying the Benjamini-Hochberg procedure to the p-values provided by the 
Wald test.

Raw data of shotgun sequencing were deposited in the SRA database55–66. Assembled annotated metagen-
omes were deposited in the DOE-JGI’s Integrated Microbial Genomes & Microbiomes (IMG/M) system67 
(Supplementary Table S5).

Data Records
Raw data of both the 16S and ITS amplicon sequencing9 and the shotgun sequencing55–66 were deposited in the 
NCBI Sequence Read Archive. Amplicon sequencing data is also available through the Genome Portal (https://
genome.jgi.doe.gov/portal/) via the accession IDs provided in Supplementary Table S5. Sample description, 
BioProject, SRA Study, SRA Run and JGI accessions of each of the sequencing libraries generated in this study are 
available in Supplementary Table 5. Code used to process amplicon sequencing data was uploaded to the Open 
Science Framework68.
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technical Validation
The quality and purity of the extracted DNA was assessed using DOE-JGI Genomic DNA Sample QC, which 
consists of the quantification of nucleic acid concentration using Qubit Fluorometric Quantitation (Thermo 
Fisher Scientific Inc., MA, USA) and a NanoDrop spectrophotometer (Thermo Fisher Scientific Inc., MA, USA), 
inspection of the 260/280 and 260/230 wavelength (nm) ratios and analysis by electrophoresis agarose gel. PCR 
of the 16S and ITS regions was controlled by reviewing the amplicon size and ensuring the absence of con-
taminations on an electrophoresis agarose gel. The prepared libraries were quantified using Kapa Biosystem’s 
next-generation sequencing library qPCR kit and run on a Roche LightCycler 480 real-time PCR instrument 
(Roche, Basel, Switzerland).

Code availability
All software used in the computational analysis described above was obtained from the Bioconda project69 using 
the Conda package manager (https://conda.io) and the pipelines were executed through the Snakemake workflow 
engine70. Conda environment files, Snakemake pipeline files and the outputs of each analysis can be accessed 
through Open Science Framework68.
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