219 research outputs found

    Entropy and energy conservation for thermal atmospheric dynamics using mixed compatible finite elements

    Full text link
    Atmospheric systems incorporating thermal dynamics must be stable with respect to both energy and entropy. While energy conservation can be enforced via the preservation of the skew-symmetric structure of the Hamiltonian form of the equations of motion, entropy conservation is typically derived as an additional invariant of the Hamiltonian system, and satisfied via the exact preservation of the chain rule. This is particularly challenging since the function spaces used to represent the thermodynamic variables in compatible finite element discretisations are typically discontinuous at element boundaries. In the present work we negate this problem by constructing our equations of motion via weighted averages of skew-symmetric formulations using both flux form and material form advection of thermodynamic variables, which allow for the necessary cancellations required to conserve entropy without the chain rule. We show that such formulations allow for stable simulations of both the thermal shallow water and 3D compressible Euler equations on the sphere using mixed compatible finite elements without entropy damping

    A VSA search for the extended Sunyaev-Zel'dovich Effect in the Corona Borealis Supercluster

    Full text link
    We present interferometric imaging at 33 GHz of the Corona Borealis supercluster, using the extended configuration of the Very Small Array. A total area of 24 deg^2 has been imaged, with an angular resolution of 11 arcmin and a sensitivity of 12 mJy/beam. The aim of these observations is to search for Sunyaev-Zel'dovich (SZ) detections from known clusters of galaxies in this supercluster and for a possible extended SZ decrement due to diffuse warm/hot gas in the intercluster medium. We measure negative flux values in the positions of the ten richest clusters in the region. Collectively, this implies a 3.0-sigma detection of the SZ effect. In the clusters A2061 and A2065 we find decrements of approximately 2-sigma. Our main result is the detection of two strong and resolved negative features at -70+-12 mJy/beam (-157+-27 microK) and -103+-10 mJy/beam (-230+-23 microK), respectively, located in a region with no known clusters, near the centre of the supercluster. We discuss their possible origins in terms of primordial CMB anisotropies and/or SZ signals related to either unknown clusters or to a diffuse extended warm/hot gas distribution. Our analyses have revealed that a primordial CMB fluctuation is a plausible explanation for the weaker feature (probability of 37.82%). For the stronger one, neither primordial CMB (probability of 0.33%) nor SZ can account alone for its size and total intensity. The most reasonable explanation, then, is a combination of both primordial CMB and SZ signal. Finally, we explore what characteristics would be required for a filamentary structure consisting of warm/hot diffuse gas in order to produce a significant contribution to such a spot taking into account the constraints set by X-ray data.Comment: 16 pages, 10 figures. Accepted in MNRA

    Field scale biodegradation of total petroleum hydrocarbons and soil restoration by Ecopiles: microbiological analysis of the process

    Full text link
    Ecopiling is a method for biodegradation of hydrocarbons in soils. It derives from Biopiles, but phytoremediation is added to biostimulation with nitrogen fertilization and bioaugmentation with local bacteria. We have constructed seven Ecopiles with soil heavily polluted with hydrocarbons in Carlow (Ireland). The aim of the study was to analyze changes in the microbial community during ecopiling. In the course of 18 months of remediation, total petroleum hydrocarbons values decreased in 99 and 88% on average for aliphatics and aromatics, respectively, indicating a successful biodegradation. Community analysis showed that bacterial alfa diversity (Shannon Index), increased with the degradation of hydrocarbons, starting at an average value of 7.59 and ending at an average value of 9.38. Beta-diversity analysis, was performed using Bray-Curtis distances and PCoA ordination, where the two first principal components (PCs) explain the 17 and 14% of the observed variance, respectively. The results show that samples tend to cluster by sampling time instead of by Ecopile. This pattern is supported by the hierarchical clustering analysis, where most samples from the same timepoint clustered together. We used DSeq2 to determine the differential abundance of bacterial populations in Ecopiles at the beginning and the end of the treatment. While TPHs degraders are more abundant at the start of the experiment, these populations are substituted by bacterial populations typical of clean soils by the end of the biodegradation process. Similar results are found for the fungal community, indicating that the microbial community follows a succession along the process. This succession starts with a TPH degraders or tolerant enriched community, and finish with a microbial community typical of clean soil

    Searching for non-Gaussianity in the VSA data

    Full text link
    We have tested Very Small Array (VSA) observations of three regions of sky for the presence of non-Gaussianity, using high-order cumulants, Minkowski functionals, a wavelet-based test and a Bayesian joint power spectrum/non-Gaussianity analysis. We find the data from two regions to be consistent with Gaussianity. In the third region, we obtain a 96.7% detection of non-Gaussianity using the wavelet test. We perform simulations to characterise the tests, and conclude that this is consistent with expected residual point source contamination. There is therefore no evidence that this detection is of cosmological origin. Our simulations show that the tests would be sensitive to any residual point sources above the data's source subtraction level of 20 mJy. The tests are also sensitive to cosmic string networks at an rms fluctuation level of 105μK105 \mu K (i.e. equivalent to the best-fit observed value). They are not sensitive to string-induced fluctuations if an equal rms of Gaussian CDM fluctuations is added, thereby reducing the fluctuations due to the strings network to 74μK74 \mu K rms . We especially highlight the usefulness of non-Gaussianity testing in eliminating systematic effects from our data.Comment: Minor corrections; accepted for publication to MNRA

    Radio source calibration for the VSA and other CMB instruments at around 30 GHz

    Get PDF
    Accurate calibration of data is essential for the current generation of CMB experiments. Using data from the Very Small Array (VSA), we describe procedures which will lead to an accuracy of 1 percent or better for experiments such as the VSA and CBI. Particular attention is paid to the stability of the receiver systems, the quality of the site and frequent observations of reference sources. At 30 GHz the careful correction for atmospheric emission and absorption is shown to be essential for achieving 1 percent precision. The sources for which a 1 percent relative flux density calibration was achieved included Cas A, Cyg A, Tau A and NGC7027 and the planets Venus, Jupiter and Saturn. A flux density, or brightness temperature in the case of the planets, was derived at 33 GHz relative to Jupiter which was adopted as the fundamental calibrator. A spectral index at ~30 GHz is given for each. Cas A,Tau A, NGC7027 and Venus were examined for variability. Cas A was found to be decreasing at 0.394±0.0190.394 \pm 0.019 percent per year over the period March 2001 to August 2004. In the same period Tau A was decreasing at 0.22±0.070.22\pm 0.07 percent per year. A survey of the published data showed that the planetary nebula NGC7027 decreased at 0.16±0.040.16\pm 0.04 percent per year over the period 1967 to 2003. Venus showed an insignificant (1.5±1.31.5 \pm 1.3 percent) variation with Venusian illumination. The integrated polarization of Tau A at 33 GHz was found to be 7.8±0.67.8\pm 0.6 percent at pa =148±3 = 148^\circ \pm 3^\circ.}Comment: 13 pages, 15 figures, submitted to MNRA

    Estimating the bispectrum of the Very Small Array data

    Get PDF
    We estimate the bispectrum of the Very Small Array data from the compact and extended configuration observations released in December 2002, and compare our results to those obtained from Gaussian simulations. There is a slight excess of large bispectrum values for two individual fields, but this does not appear when the fields are combined. Given our expected level of residual point sources, we do not expect these to be the source of the discrepancy. Using the compact configuration data, we put an upper limit of 5400 on the value of f_NL, the non-linear coupling parameter, at 95 per cent confidence. We test our bispectrum estimator using non-Gaussian simulations with a known bispectrum, and recover the input values.Comment: 17 pages, 16 figures, replaced with version accepted by MNRAS. Primordial bispectrum recalculated and figure 11 change

    The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds

    Get PDF
    In this paper we discuss the latest developments of the STRIP instrument of the "Large Scale Polarization Explorer" (LSPE) experiment. LSPE is a novel project that combines ground-based (STRIP) and balloon-borne (SWIPE) polarization measurements of the microwave sky on large angular scales to attempt a detection of the "B-modes" of the Cosmic Microwave Background polarization. STRIP will observe approximately 25% of the Northern sky from the "Observatorio del Teide" in Tenerife, using an array of forty-nine coherent polarimeters at 43 GHz, coupled to a 1.5 m fully rotating crossed-Dragone telescope. A second frequency channel with six-elements at 95 GHz will be exploited as an atmospheric monitor. At present, most of the hardware of the STRIP instrument has been developed and tested at sub-system level. System-level characterization, starting in July 2018, will lead STRIP to be shipped and installed at the observation site within the end of the year. The on-site verification and calibration of the whole instrument will prepare STRIP for a 2-years campaign for the observation of the CMB polarization.Comment: 17 pages, 15 figures, proceedings of the SPIE Astronomical Telescopes + Instrumentation conference "Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX", on June 15th, 2018, Austin (TX

    CMB observations from the CBI and VSA: A comparison of coincident maps and parameter estimation methods

    Full text link
    We present coincident observations of the Cosmic Microwave Background (CMB) from the Very Small Array (VSA) and Cosmic Background Imager (CBI) telescopes. The consistency of the full datasets is tested in the map plane and the Fourier plane, prior to the usual compression of CMB data into flat bandpowers. Of the three mosaics observed by each group, two are found to be in excellent agreement. In the third mosaic, there is a 2 sigma discrepancy between the correlation of the data and the level expected from Monte Carlo simulations. This is shown to be consistent with increased phase calibration errors on VSA data during summer observations. We also consider the parameter estimation method of each group. The key difference is the use of the variance window function in place of the bandpower window function, an approximation used by the VSA group. A re-evaluation of the VSA parameter estimates, using bandpower windows, shows that the two methods yield consistent results.Comment: 10 pages, 6 figures. Final version. Accepted for publication in MNRA

    Cosmological parameter estimation using Very Small Array data out to l=1500

    Get PDF
    We estimate cosmological parameters using data obtained by the Very Small Array (VSA) in its extended configuration, in conjunction with a variety of other CMB data and external priors. Within the flat Λ\LambdaCDM model, we find that the inclusion of high resolution data from the VSA modifies the limits on the cosmological parameters as compared to those suggested by WMAP alone, while still remaining compatible with their estimates. We find that Ωbh2=0.02340.0014+0.0012\Omega_{\rm b}h^2=0.0234^{+0.0012}_{-0.0014}, Ωdmh2=0.1110.016+0.014\Omega_{\rm dm}h^2=0.111^{+0.014}_{-0.016}, h=0.730.05+0.09h=0.73^{+0.09}_{-0.05}, nS=0.970.03+0.06n_{\rm S}=0.97^{+0.06}_{-0.03}, 1010AS=233+710^{10}A_{\rm S}=23^{+7}_{-3} and τ=0.140.07+0.14\tau=0.14^{+0.14}_{-0.07} for WMAP and VSA when no external prior is included.On extending the model to include a running spectral index of density fluctuations, we find that the inclusion of VSA data leads to a negative running at a level of more than 95% confidence (nrun=0.069±0.032n_{\rm run}=-0.069\pm 0.032), something which is not significantly changed by the inclusion of a stringent prior on the Hubble constant. Inclusion of prior information from the 2dF galaxy redshift survey reduces the significance of the result by constraining the value of Ωm\Omega_{\rm m}. We discuss the veracity of this result in the context of various systematic effects and also a broken spectral index model. We also constrain the fraction of neutrinos and find that fν<0.087f_{\nu}< 0.087 at 95% confidence which corresponds to mν<0.32eVm_\nu<0.32{\rm eV} when all neutrino masses are the equal. Finally, we consider the global best fit within a general cosmological model with 12 parameters and find consistency with other analyses available in the literature. The evidence for nrun<0n_{\rm run}<0 is only marginal within this model
    corecore