74 research outputs found

    AAV delivery of shRNA against IRS1 in GABAergic neurons in rat hippocampus impairs spatial memory in females and male rats

    Get PDF
    This is a pre-print of an article published in Brain Structure and Function. The final authenticated version is available online at: https://doi.org/10.1007/s00429-020-02155-xBrain insulin resistance is a major factor leading to impaired cognitive function and it is considered as the onset of Alzheimer´s disease. Insulin resistance is intimately linked to inflammatory conditions, many studies have revealed how pro-inflammatory cytokines lead to insulin resistance, by inhibiting IRS1 function. Thus, the dysfunction of insulin signaling is concomitant with inflammatory biomarkers. However, the specific effect of IRS1 impaired function in otherwise healthy brain has not been dissected out. So, we decided in our study, to study the specific role of IRS1 in the hippocampus, in the absence of comorbidities. To that end, shRNA against rat and human IRS1 was designed and tested in cultured HEK cells to evaluate mRNA levels and specificity. The best candidate sequence was encapsulated in an AAV vector (strain DJ8) under the control of the cytomegalovirus promoter and together with the green fluorescent protein gene as a reporter. AAV-CMV-shIRS1-EGFP and control AAV-CMV-EGFP were inoculated into the dorsal hippocampus of female and male Wistar rats. One month later, animals undertook a battery of behavioral paradigms evaluating spatial and social memory and anxiety. Our results suggest that females displayed increased susceptibility to AAV-shIRS1 in the novel recognition object paradigm; whereas both females and males show impaired performance in the T maze when infected with AAV-shIRS1 compared to control. Anxiety parameters were not affected by AAV-shIRS1 infection. We observed specific fluorescence within the hilum of the dentate gyrus, in immuno-characterized parvalbumin and somatostatin neurons. AAV DJ8 did not enter astrocytes. Intense green fibers were found in the fornix, mammillary bodies, and in the medial septum indicating that hippocampal efferent had been efficiently targeted by the AAV DJ8 infection. We observed that AAV-shIRS1 reduced significantly synaptophysin labeling in hippocampal-septal projections compared to controls. These results support that, small alterations in the insulin/IGF1 pathway in specific hippocampal circuitries can underlie alterations in synaptic plasticity and affect behavior, in the absence of inflammatory condition

    Toltén Bridge’s response under extreme conditions analysis through numerical models

    Get PDF
    This article presents the structural health analysis of a full-scale vehicular bridge, using a twin model calibrated with experimental information. This structure consists of concrete arches, built more than 80 years ago, and reinforced in the 1990s with a steel structure. Different load combinations were evaluated in this model to determine the strength of the structure according to current design standards. Finally, it was found that several of its components do not meet the current design requirements, putting the structure in a vulnerable condition to seismic hazards and restricting its service to traffic loads

    Abscisic Acid Supplementation Rescues High Fat Diet-Induced Alterations in Hippocampal Inflammation and IRSs Expression

    Get PDF
    Accumulated evidence indicates that neuroinflammation induces insulin resistance in the brain. Moreover, both processes are intimately linked to neurodegenerative disorders, including Alzheimer’s disease. Potential mechanisms underlying insulin resistance include serine phosphorylation of the insulin receptor substrate (IRS) or insulin receptor (IR) misallocation. However, only a few studies have focused on IRS expression in the brain and its modulation in neuroinflammatory processes. This study used the high-fat diet (HFD) model of neuroinflammation to study the alterations of IR, an insulin-like growth factor receptor (IGF1R) and IRS expressions in the hippocampus. We observed that HFD effectively reduced mRNA and protein IRS2 expression. In contrast, a HFD induced the upregulation of the IRS1 mRNA levels, but did not alter an IR and IGF1R expression. As expected, we observed that a HFD increased hippocampal tumor necrosis factor alpha (TNFα) and amyloid precursor protein (APP) levels while reducing brain-derived neurotrophic factor (BDNF) expression and neurogenesis. Interestingly, we found that TNFα correlated positively with IRS1 and negatively with IRS2, whereas APP levels correlated positively only with IRS1 but not IRS2. These results indicate that IRS1 and IRS2 hippocampal expression can be affected differently by HFD-induced neuroinflammation. In addition, we aimed to establish whether abscisic acid (ABA) can rescue hippocampal IRS1 and IRS2 expression, as we had previously shown that ABA supplementation prevents memory impairments and improves neuroinflammation induced by a HFD. In this study, ABA restored HFD-induced hippocampal alterations, including IRS1 and IRS2 expression, TNFα, APP, and BDNF levels and neurogenesis. In conclusion, this study highlights different regulations of hippocampal IRS1 and IRS2 expression using a HFD, indicating the important differences of these scaffolding proteins, and strongly supports ABA therapeutic effects

    Prophylactic Palmitoylethanolamide Prolongs Survival and Decreases Detrimental Inflammation in Aged Mice With Bacterial Meningitis

    Get PDF
    Easy-to-achieve interventions to promote healthy longevity are desired to diminish the incidence and severity of infections, as well as associated disability upon recovery. The dietary supplement palmitoylethanolamide (PEA) exerts anti-inflammatory and neuroprotective properties. Here, we investigated the effect of prophylactic PEA on the early immune response, clinical course, and survival of old mice after intracerebral E. coli K1 infection. Nineteen-month-old wild type mice were treated intraperitoneally with two doses of either 0.1 mg PEA/kg in 250 μl vehicle solution (n = 19) or with 250 μl vehicle solution only as controls (n = 19), 12 h and 30 min prior to intracerebral E. coli K1 infection. The intraperitoneal route was chosen to reduce distress in mice and to ensure exact dosing. Survival time, bacterial loads in cerebellum, blood, spleen, liver, and microglia counts and activation scores in the brain were evaluated. We measured the levels of IL-1β, IL-6, MIP-1α, and CXCL1 in cerebellum and spleen, as well as of bioactive lipids in serum in PEA- and vehicle-treated animals 24 h after infection. In the absence of antibiotic therapy, the median survival time of PEA-pre-treated infected mice was prolonged by 18 h compared to mice of the vehicle-pre-treated infected group (P = 0.031). PEA prophylaxis delayed the onset of clinical symptoms (P = 0.037). This protective effect was associated with lower bacterial loads in the spleen, liver, and blood compared to those of vehicle-injected animals (P ≤ 0.037). PEA-pre-treated animals showed diminished levels of pro-inflammatory cytokines and chemokines in spleen 24 h after infection, as well as reduced serum concentrations of arachidonic acid and of one of its metabolites, 20-hydroxyeicosatetraenoic acid. In the brain, prophylactic PEA tended to reduce bacterial titers and attenuated microglial activation in aged infected animals (P = 0.042). Our findings suggest that prophylactic PEA can counteract infection associated detrimental responses in old animals. Accordingly, PEA treatment slowed the onset of infection symptoms and prolonged the survival of old infected mice. In a clinical setting, prophylactic administration of PEA might extend the potential therapeutic window where antibiotic therapy can be initiated to rescue elderly patients

    Magnesium therapy improves outcome in Streptococcus pneumoniae meningitis by altering pneumolysin pore formation

    Get PDF
    BACKGROUND AND PURPOSE Streptococcus pneumoniae is the most common cause of bacterial meningitis in adults and is characterised by high lethality and substantial cognitive disabilities in survivors. Here, we study the capacity of an established therapeutic agent, magnesium, to improve survival in pneumococcal meningitis by modulating the neurological effects of the major pneumococcal pathogenic factor pneumolysin. EXPERIMENTAL APPROACH We used mixed primary glial and acute brain slice cultures, pneumolysin injection in infant rats, a mouse meningitis model, and complementary approaches such as Western blot, a black lipid bilayer conductance assay and live imaging of primary glial cells. KEY RESULTS Treatment with therapeutic concentrations of magnesium chloride (500 mg/kg in animals and 2 mM in cultures) prevented pneumolysin-induced brain swelling and tissue remodelling both in brain slices and in animal models. In contrast to other divalent ions, which diminish the membrane binding of pneumolysin in non-therapeutic concentrations, magnesium delayed toxin-driven pore formation without affecting its membrane binding or the conductance profile of its pores. Finally, magnesium prolonged the survival and improved clinical condition of mice with pneumococcal meningitis in the absence of antibiotic treatment. CONCLUSIONS AND IMPLICATIONS Magnesium is a well-established and safe therapeutic agent that has demonstrated capacity for attenuating pneumolysin-triggered pathogenic effects on the brain. The improved animal survival and clinical condition in the meningitis model points to magnesium as a promising candidate for adjunctive treatment of pneumococcal meningitis together with antibiotic therapy

    Novel 1,4-benzoxazine and 1,4-benzodioxine inhibitors of angiogenesis.

    Get PDF
    Esters of 1,4-benzoxazine and 1,4-benzodioxine compounds 1 and 10, which combine thrombin inhibitory and GPIIb/IIIa antagonistic activity in one molecule are shown to inhibit endothelial cell migration and tube formation in vitro and angiogenesis in the chicken chorioallantoic membrane (CAM) assay. The corresponding carboxylic acids 1 (R2 = H) and 11 were devoid of antiangiogenic activity, most probably due to their insufficient entry into the cell. Although thrombin inhibition remains the most probable explanation for their inhibition of angiogenesis, VEGFR2 kinase assay suggest that other targets such as VEGFR2 might be involved

    Assessing gastro-intestinal related quality of life in cystic fibrosis: Validation of PedsQL GI in children and their parents

    Get PDF
    Background: Most patients with cystic fibrosis (CF) suffer from pancreatic insufficiency, leading to fat malabsorption, malnutrition and abdominal discomfort. Until recently, no specific tool was available for assessing gastro-intestinal related quality of life (GI QOL) in patients with CF. As the Horizon2020 project MyCyFAPP aims to improve GI QOL by using a newly designed mobile application, a sensitive and reliable outcome measure was needed. We aimed to study the applicability of the existing child-specific Pediatric Quality of Life Inventory, Gastrointestinal Symptoms Scales and Module (PedsQL GI) in children with CF. Methods: A multicenter, prospective observational study was performed in 6 European centers to validate the PedsQL GI in children with CF during 3 months. Results: In total, 248 children and their parents were included. Within-patient variability of PedsQL GI was low (24.11), and there was reasonable agreement between children and parents (ICC 0.681). Nine of 14 subscales were informative (no ceiling effect). The PedsQL GI and the median scores for 4 subscales were significantly lower in patients compared to healthy controls. Positive associations were found between PedsQL GI and age (OR = 1.044, p = 0.004) and between PedsQL GI and BMI z-score (OR = 1.127, p = 0.036). PedsQL GI correlated with most CFQ-R subscales (r 0.268 to 0.623) and with a Visual Analogue Scale (r = 0.20). Conclusions: PedsQL GI is a valid and applicable instrument to assess GI QOL in children with CF. Future research efforts should examine the responsiveness of the CF PedsQL GI to change in the context of clinical interventions and trials

    Clinical presentation and proteomic signature of patients with TANGO2 mutations

    Get PDF
    Transport And Golgi Organization protein 2 (TANGO2) deficiency has recently been identified as a rare metabolic disorder with a distinct clinical and biochemical phenotype of recurrent metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias, and encephalopathy with cognitive decline. We report nine subjects from seven independent families, and we studied muscle histology, respiratory chain enzyme activities in skeletal muscle and proteomic signature of fibroblasts. All nine subjects carried autosomal recessive TANGO2 mutations. Two carried the reported deletion of exons 3 to 9, one homozygous, one heterozygous with a 22q11.21 microdeletion inherited in trans. The other subjects carried three novel homozygous (c.262C&gt;T/p.Arg88*; c.220A&gt;C/p.Thr74Pro; c.380+1G&gt;A), and two further novel heterozygous (c.6_9del/p.Phe6del); c.11-13delTCT/p.Phe5del mutations. Immunoblot analysis detected a significant decrease of TANGO2 protein. Muscle histology showed mild variation of fiber diameter, no ragged-red/cytochrome c oxidase-negative fibers and a defect of multiple respiratory chain enzymes and coenzyme Q10 (CoQ10 ) in two cases, suggesting a possible secondary defect of oxidative phosphorylation. Proteomic analysis in fibroblasts revealed significant changes in components of the mitochondrial fatty acid oxidation, plasma membrane, endoplasmic reticulum-Golgi network and secretory pathways. Clinical presentation of TANGO2 mutations is homogeneous and clinically recognizable. The hemizygous mutations in two patients suggest that some mutations leading to allele loss are difficult to detect. A combined defect of the respiratory chain enzymes and CoQ10 with altered levels of several membrane proteins provides molecular insights into the underlying pathophysiology and may guide rational new therapeutic interventions.</p

    Histórias de vida: saberes informais e formais do sujeito jovem da comunidade Chico Mendes

    No full text
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências da Educação. Programa de Pós-Graduação em Educação.O presente trabalho tem por objetivo ampliar a reflexão acerca do jovem exposto à situação de empobrecimento, mais especificamente o morador da Comunidade Chico Mendes, em Florianópolis, a partir da análise de suas identidades e de suas relações com o saber formal - escola regular - e com o saber informal - formas associativas e ONG. Neste processo, aspectos como sua autoria - na criação de rap e do livro -, a ludicidade e o humor que depositam nos espaços informais demarcam forte motivação e uma relação apurada com o saber, ao passo que na escola, apesar de considerarem importante estudar para "melhorar de vida", o maior motivador é a convivialidade. Os dados coletados dão visibilidade ao fato de que os jovens da pesquisa constroem saberes significativos na informalidade, inclusive ao buscarem espaços nas escolas regulares, por se assumirem sujeitos de direitos, dialogantes, interlocutores, construtores de alternativas, vivenciando a experiência da resistência cultural, estando mobilizados enquanto seres históricos que se constroem construindo com os outros
    corecore