240 research outputs found

    Resveratrol Suppresses Constitutive Activation of AKT via Generation of ROS and Induces Apoptosis in Diffuse Large B Cell Lymphoma Cell Lines

    Get PDF
    BACKGROUND: We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL). In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4', 5-trihydroxystilbene), a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL) cells in causing inhibition of cell viability and inducing apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS). Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect. CONCLUSION/SIGNIFICANCE: Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway

    Image-Based Assessment of Growth and Signaling Changes in Cancer Cells Mediated by Direct Cell-Cell Contact

    Get PDF
    Many important biological processes are controlled through cell-cell interactions, including the colonization of metastatic tumor cells and the control of differentiation of stem cells within their niche. Despite the crucial importance of the cellular environment in regulating cellular signaling, in vitro methods for the study of such interactions are difficult and/or indirect.We report on the development of an image-based method for distinguishing two cell types grown in coculture. Furthermore, cells of one type that are in direct contact with cells of a second type (adjacent cells) can be analyzed separately from cells that are not within a single well. Changes are evaluated using population statistics, which are useful in detecting subtle changes across two populations. We have used this system to characterize changes in the LNCaP prostate carcinoma cell line when grown in contact with human vascular endothelial cells (HUVECs). We find that the expression and phosphorylation of WWOX is reduced in LNCaP cells when grown in direct contact with HUVECs. Reduced WWOX signaling has been associated with reduced activation or expression of JNK and p73. We find that p73 levels are also reduced in LNCaP cells grown in contact with HUVECs, but we did not observe such a change in JNK levels.We find that the method described is statistically robust and can be adapted to a wide variety of studies where cell function or signaling are affected by heterotypic cell-cell contact. Ironically, a potential challenge to the method is its high level of sensitivity is capable of classifying events as statistically significant (due to the high number cells evaluated individually), when the biological effect may be less clear. The methodology would be best used in conjunction with additional methods to evaluate the biological role of potentially subtle differences between populations. However, many important events, such as the establishment of a metastatic tumor, occur through rare but important changes, and methods such as we describe here can be used to identify and characterize the contribution of the environment to these changes

    Search for a narrow charmed baryonic state decaying to D^*+/- p^-/+ in ep collisions at HERA

    Get PDF
    A resonance search has been made in the D^*+/- p^-/+ invariant-mass spectrum with the ZEUS detector at HERA using an integrated luminosity of 126 pb^-1. The decay channels D^*+ -> D^0 pi^+_s -> (K^- pi^+) pi^+_s and D^*+ -> D^0 pi^+_s -> (K^- pi^+ pi^+ pi^-) pi^+_s (and the corresponding antiparticle decays) were used to identify D^*+/- mesons. No resonance structure was observed in the D^*+/- p^-/+ mass spectrum from more than 60000 reconstructed D^*+/- mesons. The results are not compatible with a report of the H1 Collaboration of a charmed pentaquark, Theta^0_c.Comment: 22 pages, 7 figures, 1 table; minor text revisions; 2 references adde

    Microtubular Stability Affects pVHL-Mediated Regulation of HIF-1alpha via the p38/MAPK Pathway in Hypoxic Cardiomyocytes

    Get PDF
    BACKGROUND: Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL), as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. METHODOLOGY/PRINCIPAL FINDINGS: In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4) overexpression plasmids and microtubule-depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu) overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. CONCLUSIONS/SIGNIFICANCE: This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes

    ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines

    Get PDF
    BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is associated with poor survival. To identify prognostic and diagnostic markers and therapeutic targets, we studied ANO1, a recently identified calcium-activated chloride channel (CaCC). METHODS: High-resolution genomic and transcriptomic microarray analysis and functional studies using HNSCC cell line and CaCC inhibitors. RESULTS: Amplification and overexpression of genes within the 11q13 amplicon are associated with the propensity for future distance metastasis of HPV-negative HNSCC. ANO1 was selected for functional studies based on high correlations, cell surface expression and CaCC activity. ANO1 overexpression in cells that express low endogenous levels stimulates cell movement, whereas downregulation in cells with high endogenous levels has the opposite effect. ANO1 overexpression also stimulates attachment, spreading, detachment and invasion, which could account for its effects on migration. CaCC inhibitors decrease movement, suggesting that channel activity is required for the effects of ANO1. In contrast, ANO1 overexpression does not affect cell proliferation. INTERPRETATION: ANO1 amplification and expression could be markers for distant metastasis in HNSCC. ANO1 overexpression affects cell properties linked to metastasis. Inhibitors of CaCCs could be used to inhibit the tumourigenic properties of ANO1, whereas activators developed to increase CaCC activity could have adverse effects

    An overview of tissue engineering approaches for management of spinal cord injuries

    Get PDF
    Severe spinal cord injury (SCI) leads to devastating neurological deficits and disabilities, which necessitates spending a great deal of health budget for psychological and healthcare problems of these patients and their relatives. This justifies the cost of research into the new modalities for treatment of spinal cord injuries, even in developing countries. Apart from surgical management and nerve grafting, several other approaches have been adopted for management of this condition including pharmacologic and gene therapy, cell therapy, and use of different cell-free or cell-seeded bioscaffolds. In current paper, the recent developments for therapeutic delivery of stem and non-stem cells to the site of injury, and application of cell-free and cell-seeded natural and synthetic scaffolds have been reviewed

    Scaled momentum distributions for K-S(0) and Λ /̄ Λ in DIS at HERA

    Get PDF
    Scaled momentum distributions for the strange hadrons K0S and Λ/Λ¯ were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb−1. The evolution of these distributions with the photon virtuality, Q 2, was studied in the kinematic region 10 < Q 2  < 40000 GeV2 and 0.001 < x < 0.75, where x is the Bjorken scaling variable. Clear scaling violations are observed. Predictions based on different approaches to fragmentation were compared to the measurements. Leading-logarithm parton-shower Monte Carlo calculations interfaced to the Lund string fragmentation model describe the data reasonably well in the whole range measured. Next-to-leading-order QCD calculations based on fragmentation functions, FFs, extracted from e + e − data alone, fail to describe the measurements. The calculations based on FFs extracted from a global analysis including e + e −, ep and pp data give an improved description. The measurements presented in this paper have the potential to further constrain the FFs of quarks, anti-quarks and gluons yielding K0S and Λ/Λ¯ strange hadrons

    The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study.

    Get PDF
    This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms

    Spotlight on Differentially Expressed Genes in Urinary Bladder Cancer

    Get PDF
    INTRODUCTION: We previously identified common differentially expressed (DE) genes in bladder cancer (BC). In the present study we analyzed in depth, the expression of several groups of these DE genes. MATERIALS AND METHODS: Samples from 30 human BCs and their adjacent normal tissues were analyzed by whole genome cDNA microarrays, qRT-PCR and Western blotting. Our attention was focused on cell-cycle control and DNA damage repair genes, genes related to apoptosis, signal transduction, angiogenesis, as well as cellular proliferation, invasion and metastasis. Four publicly available GEO Datasets were further analyzed, and the expression data of the genes of interest (GOIs) were compared to those of the present study. The relationship among the GOI was also investigated. GO and KEGG molecular pathway analysis was performed to identify possible enrichment of genes with specific biological themes. RESULTS: Unsupervised cluster analysis of DNA microarray data revealed a clear distinction in BC vs. control samples and low vs. high grade tumors. Genes with at least 2-fold differential expression in BC vs. controls, as well as in non-muscle invasive vs. muscle invasive tumors and in low vs. high grade tumors, were identified and ranked. Specific attention was paid to the changes in osteopontin (OPN, SPP1) expression, due to its multiple biological functions. Similarly, genes exhibiting equal or low expression in BC vs. the controls were scored. Significant pair-wise correlations in gene expression were scored. GO analysis revealed the multi-facet character of the GOIs, since they participate in a variety of mechanisms, including cell proliferation, cell death, metabolism, cell shape, and cytoskeletal re-organization. KEGG analysis revealed that the most significant pathway was that of Bladder Cancer (p = 1.5×10(-31)). CONCLUSIONS: The present work adds to the current knowledge on molecular signature identification of BC. Such works should progress in order to gain more insight into disease molecular mechanisms
    corecore