30 research outputs found
Breathing as a Fundamental Rhythm of Brain Function
Ongoing fluctuations of neuronal activity have long been considered intrinsic noise that
introduces unavoidable and unwanted variability into neuronal processing, which the
brain eliminates by averaging across population activity (Georgopoulos et al., 1986;
Lee et al., 1988; Shadlen and Newsome, 1994; Maynard et al., 1999). It is now
understood, that the seemingly random fluctuations of cortical activity form highly
structured patterns, including oscillations at various frequencies, that modulate evoked
neuronal responses (Arieli et al., 1996; Poulet and Petersen, 2008; He, 2013) and affect
sensory perception (Linkenkaer-Hansen et al., 2004; Boly et al., 2007; Sadaghiani et al.,
2009; Vinnik et al., 2012; Palva et al., 2013). Ongoing cortical activity is driven by
proprioceptive and interoceptive inputs. In addition, it is partially intrinsically generated
in which case it may be related to mental processes (Fox and Raichle, 2007; Deco
et al., 2011). Here we argue that respiration, via multiple sensory pathways, contributes
a rhythmic component to the ongoing cortical activity. We suggest that this rhythmic
activity modulates the temporal organization of cortical neurodynamics, thereby linking
higher cortical functions to the process of breathing
The Timing and Strength of Regional Brain Activation Associated with Word Recognition in Children with Reading Difficulties
The study investigates the relative degree and timing of cortical activation across parietal, temporal, and frontal regions during performance of a continuous visual-word recognition task in children who experience reading difficulties (N = 44, RD) and typical readers (N = 40, NI). Minimum norm estimates of regional neurophysiological activity were obtained from magnetoencephalographic recordings. Children with RD showed bilaterally reduced neurophysiological activity in the superior and middle temporal gyri, and increased activity in rostral middle frontal and ventral occipitotemporal cortices, bilaterally. The temporal profile of activity in the RD group, featured near-simultaneous activity peaks in temporal, inferior parietal, and prefrontal regions, in contrast to a clear temporal progression of activity among these areas in the NI group. These results replicate and extend previous MEG and fMRI results demonstrating atypical, latency-dependent attributes of the brain circuit involved in word reading in children with reading difficulties
Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury
Cross-frequency coupling (CFC) is thought to represent a basic mechanism of functional integration of neural networks across distant brain regions. In this study, we analyzed CFC profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 30 mild traumatic brain injury (mTBI) patients and 50 controls. We used mutual information (MI) to quantify the phase-to-amplitude coupling (PAC) of activity among the recording sensors in six nonoverlapping frequency bands. After forming the CFC-based functional connectivity graphs, we employed a tensor representation and tensor subspace analysis to identify the optimal set of features for subject classification as mTBI or control. Our results showed that controls formed a dense network of stronger local and global connections indicating higher functional integration compared to mTBI patients. Furthermore, mTBI patients could be separated from controls with more than 90% classification accuracy. These findings indicate that analysis of brain networks computed from resting-state MEG with PAC and tensorial representation of connectivity profiles may provide a valuable biomarker for the diagnosis of mTBI
Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury
Mild traumatic brain injury (mTBI) may affect normal cognition and behavior by disrupting the functional connectivity networks that mediate efficient communication among brain regions. In this study, we analyzed brain connectivity profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 31 mTBI patients and 55 normal controls. We used phase-locking value estimates to compute functional connectivity graphs to quantify frequency-specific couplings between sensors at various frequency bands. Overall, normal controls showed a dense network of strong local connections and a limited number of long-range connections that accounted for approximately 20% of all connections, whereas mTBI patients showed networks characterized by weak local connections and strong long-range connections that accounted for more than 60% of all connections. Comparison of the two distinct general patterns at different frequencies using a tensor representation for the connectivity graphs and tensor subspace analysis for optimal feature extraction showed that mTBI patients could be separated from normal controls with 100% classification accuracy in the alpha band. These encouraging findings support the hypothesis that MEG-based functional connectivity patterns may be used as biomarkers that can provide more accurate diagnoses, help guide treatment, and monitor effectiveness of intervention in mTBI
Ventromedial prefrontal volume predicts understanding of others and social network size
Cognitive abilities such as Theory of Mind (ToM), and more generally mentalizing competences, are central to human sociality. Neuroimaging has associated these abilities with specific brain regions including temporo-parietal junction, superior temporal sulcus, frontal pole, and ventromedial prefrontal cortex. Previous studies have shown both that mentalizing competence, indexed as the ability to correctly understand others' belief states, is associated with social network size and that social group size is correlated with frontal lobe volume across primate species (the social brain hypothesis). Given this, we predicted that both mentalizing competences and the number of social relationships a person can maintain simultaneously will be a function of gray matter volume in these regions associated with conventional Theory of Mind. We used voxel-based morphometry of Magnetic Resonance Images (MRIs) to test this hypothesis in humans. Specifically, we regressed individuals' mentalizing competences and social network sizes against gray matter volume. This revealed that gray matter volume in bilateral posterior frontal pole and left temporoparietal junction and superior temporal sucus varies parametrically with mentalizing competence. Furthermore, gray matter volume in the medial orbitofrontal cortex and the ventral portion of medial frontal gyrus, varied parametrically with both mentalizing competence and social network size, demonstrating a shared neural basis for these very different facets of sociality. These findings provide the first fine-grained anatomical support for the social brain hypothesis. As such, they have important implications for our understanding of the constraints limiting social cognition and social network size in humans, as well as for our understanding of how such abilities evolved across primates
Optimizing estimation of hemispheric dominance for language using magnetic source imaging
The efficacy of magnetoencephalography (MEG) as an alternative to invasive methods for investigating the cortical representation of language has been explored in several studies. Recently, studies comparing MEG to the gold standard Wada procedure have found inconsistent and often less-than accurate estimates of laterality across various MEG studies. Here we attempted to address this issue among normal right-handed adults (N = 12) by supplementing a well-established MEG protocol involving word recognition and the single dipole method with a sentence comprehension task and a beamformer approach localizing neural oscillations. Beamformer analysis of word recognition and sentence comprehension tasks revealed a desynchronization in the 10–18 Hz range, localized to the temporo-parietal cortices. Inspection of individual profiles of localized desynchronization (10–18 Hz) revealed left hemispheric dominance in 91.7% and 83.3% of individuals during the word recognition and sentence comprehension tasks, respectively. In contrast, single dipole analysis yielded lower estimates, such that activity in temporal language regions was left-lateralized in 66.7% and 58.3% of individuals during word recognition and sentence comprehension, respectively. The results obtained from the word recognition task and localization of oscillatory activity using a beamformer appear to be in line with general estimates of left hemispheric dominance for language in normal right-handed individuals. Furthermore, the current findings support the growing notion that changes in neural oscillations underlie critical components of linguistic processing
Event-related potential characterisation of the Shakespearean functional shift in narrative sentence structure.
International audienceNeurolinguistic studies have scrutinised the physiological consequences of disruptions in the flow of language comprehension produced by violations of meaning, syntax, or both. Some 400 years ago, Shakespeare already crafted verses in which the functional status of words was changed, as in "to lip a wanton in a secure couch". Here, we tested the effect of word class conversion as used by Shakespeare--the functional shift--on event-related brain potential waves traditionally reported in neurophysiolinguistics: the left anterior negativity (LAN), the N400, and the P600. Participants made meaningfulness decisions to sentences containing (a) a semantic incongruity, (b) a functional shift, (c) a double violation, or (d) neither a semantic incongruity nor a syntactic violation. The Shakespearean functional shift elicited significant LAN and P600 modulations but failed to modulate the N400 wave. This provides evidence that words which had their functional status changed triggered both an early syntactic evaluation process thought to be mainly automatic and a delayed re-evaluation/repair process that is more controlled, but semantic integration required no additional processing. We propose that this dissociation between syntactic and semantic evaluation enabled Shakespeare to create dramatic effects without diverting his public away from meaning
Comparing the efficacy of awake and sedated MEG to TMS in mapping hand sensorimotor cortex in a clinical cohort
Non-invasive methods such as Transcranial Magnetic Stimulation (TMS) and magnetoencephalography (MEG) aid in the pre-surgical evaluation of patients with epilepsy or brain tumor to identify sensorimotor cortices. MEG requires sedation in children or patients with developmental delay. However, TMS can be applied to awake patients of all ages with any cognitive abilities. In this study, we compared the efficacy of TMS with MEG (in awake and sedated states) in identifying the hand sensorimotor areas in patients with epilepsy or brain tumors. We identified 153 patients who underwent awake- (n = 98) or sedated-MEG (n = 55), along with awake TMS for hand sensorimotor mapping as part of their pre-surgical evaluation. TMS involved stimulating the precentral gyrus and recording electromyography responses, while MEG identified the somatosensory cortex during median nerve stimulation. Awake-MEG had a success rate of 92.35 % and TMS had 99.49 % (p-value = 0.5517). However, in the sedated-MEG cohort, TMS success rate of 95.61 % was significantly higher compared to MEG’s 58.77 % (p-value = 0.0001). Factors affecting mapping success were analyzed. Logistic regression across the entire cohort identified patient sedation as the lone significant predictor, contrary to age, lesion, metal, and number of antiseizure medications (ASMs). A subsequent analysis replaced sedation with anesthetic drug dosage, revealing no significant predictors impacting somatosensory mapping success under sedation. This study yields insights into the utility of TMS and MEG in mapping hand sensorimotor cortices and underscores the importance of considering factors that influence eloquent cortex mapping limitations during sedation
Temporo-parietal brain activity as a longitudinal predictor of response to educational interventions among middle school struggling readers
Spatiotemporal brain activation profiles were obtained from 27 middle school students experiencing difficulties in reading comprehension as well as word-level skills (RD) and 23 age- and IQ-matched non-reading impaired students during performance of an oral pseudoword reading task using Magnetoencephalography (MEG). Based on their scores on standardized reading fluency tests 1 year later, students with RD who showed significant improvement were classified as Adequate Responders (AR) whereas those not demonstrating such gains were classified as Inadequate Responders (IR). At baseline, activation profiles of the AR group featured increased activity in the left supramarginal and angular gyri, as well as in the superior and middle temporal gyri, bilaterally compared to IR. The degree of activity in these regions was a significant predictor of the amount of subsequent gains in reading fluency. These results extend previous functional brain imaging findings of beginning readers, suggesting that recruitment of brain areas that typically serve as key components of the brain circuit for reading is an important factor in determining response to intervention in older struggling readers
Engagement of temporal lobe regions predicts response to educational interventions in adolescent struggling readers
Brain activation profiles obtained using magnetoencephalography were compared between middle-school students experiencing reading difficulties and non-reading-impaired students during performance of a continuous printed word recognition task. Struggling readers underwent small-group remedial instruction, and students who showed significant gains in word reading efficiency at a one-year follow-up assessment were classified as Adequate Responders whereas those not demonstrating such gains as Inadequate Responders. At baseline, compared to Inadequate Responders, the activation profiles of Adequate Responders featured increased activity in the left middle, superior temporal, and ventral occipitotemporal regions, as well as in the right mesial temporal cortex. The degree of activity in these regions was a significant predictor of improvement in word reading efficiency beyond the prediction afforded by baseline reading accuracy or fluency measures. The engagement of brain areas that typically serve as key components of the brain circuit for reading may be an important factor in predicting response to intervention in older students who experience reading difficulties