12 research outputs found

    Epidemiology, clinical characteristics, and outcome of hospitalized COVID-19 patients in Kurdistan Province, Iran

    Get PDF
    BACKGROUND: The present study aimed to evaluate the epidemiology, clinical characteristics, and outcome of confirmed and suspected hospitalized coronavirus disease 2019 (COVID-19) cases in Iran hospitals affiliated with the Kurdistan University of Medical Sciences, Sanandaj, Iran. METHODS: This cross-sectional study was performed on all confirmed and suspected hospitalized COVID-19 cases in hospitals affiliated with the Kurdistan University of Medical Sciences between March and September 2020. Required data were obtained from the Hospital Intelligent Management System of hospitals. Independent t-test, chi-square test, Fisher's exact test, and one-way analysis of variance (ANOVA) were used for univariate analysis. Variables with P-value < 0.3 in univariate analysis were entered into the multivariate model, and the adjusted odds ratio (AOR) was calculated. RESULTS: Out of 9176 cases, 3210 cases (35.03%) were confirmed with COVID-19. The mean and standard deviation (SD) of age of the cases was 56.5 ± 19.3 in the confirmed and 57.5 ± 20.6 in the suspected cases. The confirmed and suspected cases’ mortality rate was 15.0% and 10.2%, respectively. In both groups, the most common symptoms of admission to the hospital were respiratory distress, coughing, fever, and muscular pain. The variables of older age, male gender, being transferred to hospitals by ambulance, intensive care unit (ICU) hospitalization, being intubated, blood oxygen saturation level less than 93, and having an underlying disease were statistically associated with an increased chance of death. CONCLUSION: The mortality rate among both confirmed and suspected hospitalized COVID-19 cases was significant, and this rate was higher for the confirmed cases. Death-related risk factors should be considered in resource allocation, management, and patient prioritization to reduce the outcome of death

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    RF Characterisation of Bulk Niobium and Thin Film Coated Planar Samples at 7.8 GHz

    No full text
    International audienceResearch is ongoing into the use of superconducting thin films to replace bulk niobium for future radio frequency (RF) cavities. A key part of this research requires measuring the RF properties of candidate films. However, coating and testing thin films on full-sized cavities is both costly and time-consuming. Instead, films are typically deposited on small, flat samples and characterised using a test cavity. A cost-effective facility for testing such samples has recently been built and commissioned at Daresbury Laboratory. The facility allows for low power surface resistance measurements at a resonant frequency of 7.8 GHz, temperatures down to 4 K and sample surface magnetic fields up to 1 mT. A brief overview of this facility as well as recent results from measurements of both bulk Nb and thin film coated samples will be presented

    Thick Film Morphology and SC Characterizations of 6 GHz Nb/Cu Cavities

    No full text
    Thick films deposited in long pulse DCMS mode onto 6 GHz copper cavities have demonstrated the mitigation of the Q-slope at low accelerating fields. The Nb thick films (~40 microns) show the possibility to reproduce the bulk niobium superconducting properties and morpholo-gy characterizations exhibited dense and void-free films that are encouraging for the scaling of the process to 1.3 GHz cavities. In this work a full characterization of thick films by DC magnetometry, computer tomography, SEM and RF characterizations are presented

    Impact of the Cu Substrate Surface Preparation on the Morphological, Superconductive and RF Properties of the Nb Superconductive Coatings

    No full text
    Nowadays, one of the main issues of the superconducting thin film resonant cavities is the Cu surface preparation. A better understanding of the impact of copper surface preparation on the morphological, superconductive (SC) and RF properties of the coating, is mandatory in order to improve the performances of superconducting cavities by coating techniques. ARIES H₂020 collaboration includes a specific work package (WP15) to study the influence of Cu surface polishing on the SRF performances of Nb coatings that involves a team of 8 research groups from 7 different countries. In the present work, a comparison of 4 different polishing processes for Cu (Tumbling, EP, SUBU, EP+SUBU) is presented through the evaluation of the SC and morphological properties of Nb thin film coated on Cu planar samples and QPR samples, polished with different procedures. Effects of laser annealing on Nb thin films have also been studied. Different surface characterizations have been applied: roughness measurements, SEM, EDS, XRD, AFM, and thermal and photo-stimulated exoelectrons measurements. SC properties were evaluated with PPMS, and QPR measurements will be carry out at HZB in the beginning of 2019

    Magnetic Field Penetration of Niobium Thin Films Produced by the ARIES Collaboration

    No full text
    Superconducting (SC) thin film coatings on Cu substrates are already widely used as an alternative to bulk Nb SRF structures. Using Cu allows improved thermal stability compared to Nb due to having a greater thermal conductivity. Niobium thin film coatings also reduce the amount of Nb required to produce a cavity. The performance of thin film Nb cavities is not as good as bulk Nb cavities. The H2020 ARIES WP15 collaboration studied the impact of substrate polishing and the effect produced on Nb thin film depositions. Multiple samples were produced from Cu and polished with various techniques. The polished Cu substrates were then coated with a Nb film at partner institutions. These samples were characterised with surface characterisation techniques for film morphology and structure. The SC properties were studied with 2 DC techniques, a vibrating sample magnetometer (VSM) and a magnetic field penetration (MFP) facility. The results conclude that both chemical polishing and electropolishing produce the best DC properties in the MFP facility. A comparison between the VSM and the MFP facility can be made for 10 μ\mum thick samples, but not for 3 μ\mum thick samples

    Synthesis of Nb and Alternative Superconducting Film to Nb for SRF Cavity as Single Layer

    Get PDF
    International audienceThe production of superconducting coatings for radio frequency (RF) cavities has been developed over several decades. It is widely accepted that for any further improvement in cavity RF performance, innovation is needed and one may have to turn to other forms of Nb and other superconducting materials. The potential benefits of using materials other than Nb would be a higher Tc and a potentially higher critical field Hc. This could lead to potentially significant cryogenic cost reductions if the cavity operation temperature is 4.2 K or higher. We report on optimising deposition parameters and the effect of substrate treatment prior to deposition, on successful synthesis of Nb and A15 superconducting thin film. The materials characterization is determined using scanning electron microscopy SEM, energy dispersive spectroscopy EDS, glancing X-ray diffraction GXRD, atomic force microscopy AFM and Rutherford backscattering RBS. The DC superconducting properties have been tested using Vibrating Sample Magnetometer VSM and Magnetic Field Penetration MPF. This work involves a team of 8 research groups in 7 different countries and is part of the H2020 ARIES collaboration

    Main highlights of ARIES WP15 collaboration

    No full text
    International audienceAn international collaboration of research teams from CEA (France), CERN (Switzerland), INFN/LNL (Italy), HZB and USI (Germany), IEE (Slovakia), RTU (Latvia) and STFC/DL (UK), are working together on better understanding of how to improve the properties of superconducting thin films (ScTF) for RF cavities. The collaboration has been formed as WP15 in the H2020 ARIES project funded by EC. The systematic study of ScTF covers: Cu substrate polishing with different techniques (EP, SUBU, EP+SUBU, tumbling, laser), Nb, NbN, Nb₃Sn and SIS film deposition and characterisation, Laser post deposition treatments, DC magnetisation characterisation, application of all obtained knowledge on polishing, deposition and characterisation, Laser post deposition treatments, DC magnetisation characterisation, application to the QPR samples for testing the films at RF conditions. The preparation, deposition and characterisation of each sample involves 3-5 partners enhancing the capability of each other and resulting in a more complete analysis of each film. The talk will give an overview of the collaborative research and will be an introduction to the detailed talks given by the team members
    corecore