560 research outputs found
Three-way symbiotic relationships in whale sharks
Symbiotic relationships between fishes and other organisms are not always easily defined, and three-way symbiotic relationships are rarely reported. Here we examine the relationship between the endangered whale shark, echeneids (remoras and sharksuckers) and a symbiotic copepod. Through their symbiosis with whale sharks, sharksuckers gain one food source from the hostâs parasites and energetically-free transportation to foraging areas, where they are also able to feed on the prey targeted by their hosts. The relationship between whale sharks and sharksuckers is complex, and most accurately described as mutualism. Likewise, the whale shark and copepod relationship is also complex, and could be described as a parasitic relationship with commensal or even mutualistic characteristics. Although echeneids are not considered to form host-specific relationships and can be free-ranging, the whale shark copepod occurs only on whale sharks; its survival inextricably linked to that of its host
Highlighting when animals expend excessive energy for travel using dynamic body acceleration
Travel represents a major cost for many animals so there should be selection pressure for it to be efficient â at minimum cost. However, animals sometimes exceed minimum travel costs for reasons that must be correspondingly important. We use Dynamic Body Acceleration (DBA), an acceleration-based metric, as a proxy for movement-based power, in tandem with vertical velocity (rate of change in depth) in a shark (Rhincodon typus) to derive the minimum estimated power required to swim at defined vertical velocities. We show how subtraction of measured DBA from the estimated minimum power for any given vertical velocity provides a âproxy for power above minimumâ metric (PPAmin), highlighting when these animals travel above minimum power. We suggest that the adoption of this metric across species has value in identifying where and when animals are subject to compelling conditions that lead them to deviate from ostensibly judicious energy expenditure
Chandra Smells a RRAT: X-ray Detection of a Rotating Radio Transient
"Rotating RAdio Transients" (RRATs) are a newly discovered astronomical
phenomenon, characterised by occasional brief radio bursts, with average
intervals between bursts ranging from minutes to hours. The burst spacings
allow identification of periodicities, which fall in the range 0.4 to 7
seconds. The RRATs thus seem to be rotating neutron stars, albeit with
properties very different from the rest of the population. We here present the
serendipitous detection with the Chandra X-ray Observatory of a bright
point-like X-ray source coincident with one of the RRATs. We discuss the
temporal and spectral properties of this X-ray emission, consider counterparts
in other wavebands, and interpret these results in the context of possible
explanations for the RRAT population.Comment: 5 pages, 2 b/w figures, 1 color figure. To appear in the proceedings
of "Isolated Neutron Stars", Astrophysics & Space Science, in pres
Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo
Plasticity at synapses between the cortex and striatum is considered critical for learning novel actions. However, investigations of spike-timing-dependent plasticity (STDP) at these synapses have been performed largely in brain slice preparations, without consideration of physiological reinforcement signals. This has led to conflicting findings, and hampered the ability to relate neural plasticity to behavior. Using intracellular striatal recordings in intact rats, we show here that pairing presynaptic and postsynaptic activity induces robust Hebbian bidirectional plasticity, dependent on dopamine and adenosine signaling. Such plasticity, however, requires the arrival of a reward-conditioned sensory reinforcement signal within 2âs of the STDP pairing, thus revealing a timing-dependent eligibility trace on which reinforcement operates. These observations are validated with both computational modeling and behavioral testing. Our results indicate that Hebbian corticostriatal plasticity can be induced by classical reinforcement learning mechanisms, and might be central to the acquisition of novel actions
The deep propagating gravity wave experiment (deepwave): an airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere
Abstract
The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earthâs surface to âŒ100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian âhotspotsâ of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to âŒ100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes.David C. Fritts, Ronald B. Smith, Michael J. Taylor, James D. Doyle, Stephen D. Eckermann, Andreas Dörnbrack, Markus Rapp, Bifffford P. Williams, P.-Dominique Pautet, Katrina Bossert, Neal R. Criddddle, Carolyn A. Reynolds, P. Alex Reinecke, Michael Uddddstrom, Michael J. Revell, Richard Turner, Bernd Kaifler, Johannes S. Wagner, Tyler Mixa, Christopher G. Kruse, Alison D. Nugent, Campbell D. Watson, Sonja Gisinger, Steven M. Smith, Ruth S. Lieberman, Brian Laughman, James J. Moore, William O. Brown, Julie A. Haggerty, Alison Rockwell, Gregory J. Stossmeister, Steven F. Williams, Gonzalo Hernandez, Damian J. Murphy, Andrew R. Klekociuk, Iain M. Reid, and Jun M
Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses
1 Plant species diversity drops when fertilizer is added or productivity increases. To explain this, the total competition hypothesis predicts that competition above ground and below ground both become more important, leading to more competitive exclusion, whereas the light competition hypothesis predicts that a shift from below-ground to above-ground competition has a similar effect. The density hypothesis predicts that more above-ground competition leads to mortality of small individuals of all species, and thus a random loss of species from plots. 2 Fertilizer was added to old field plots to manipulate both below-ground and above-ground resources, while shadecloth was used to manipulate above-ground resources alone in tests of these hypotheses. 3 Fertilizer decreased both ramet density and species diversity, and the effect remained significant when density was added as a covariate. Density effects explained only a small part of the drop in diversity with fertilizer. 4 Shadecloth and fertilizer reduced light by the same amount, but only fertilizer reduced diversity. Light alone did not control diversity, as the light competition hypothesis would have predicted, but the combination of above-ground and below-ground competition caused competitive exclusion, consistent with the total competition hypothesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75695/1/j.1365-2745.2001.00662.x.pd
VERITAS: the Very Energetic Radiation Imaging Telescope Array System
The Very Energetic Radiation Imaging Telescope Array System (VERITAS)
represents an important step forward in the study of extreme astrophysical
processes in the universe. It combines the power of the atmospheric Cherenkov
imaging technique using a large optical reflector with the power of
stereoscopic observatories using arrays of separated telescopes looking at the
same shower. The seven identical telescopes in VERITAS, each of aperture 10 m,
will be deployed in a filled hexagonal pattern of side 80 m; each telescope
will have a camera consisting of 499 pixels with a field of view of 3.5 deg
VERITAS will substantially increase the catalog of very high energy (E >
100GeV) gamma-ray sources and greatly improve measurements of established
sources.Comment: 44 pages, 16 figure
The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour
Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect
Enhancing crop yields through improvements in the efficiency of photosynthesis and respiration
Published online January 2023The rate with which crop yields per hectare increase each year is plateauing at the same time that human population growth and other factors increase food demand. Increasing yield potential (Yp) of crops is vital to address these challenges. In this review, we explore a component of Yp that has yet to be optimised â that being improvements in the efficiency with which light energy is converted into biomass (Ï”c) via modifications to CO2 fixed per unit quantum of light (α), efficiency of respiratory ATP production (Ï”prod) and efficiency of ATP use (Ï”use). For α, targets include changes in photoprotective machinery, ribulose bisphosphate carboxylase/oxygenase kinetics and photorespiratory pathways. There is also potential for Ï”prod to be increased via targeted changes to the expression of the alternative oxidase and mitochondrial uncoupling pathways. Similarly, there are possibilities to improve Ï”use via changes to the ATP costs of phloem loading, nutrient uptake, futile cycles and/or protein/membrane turnover. Recently developed high-throughput measurements of respiration can serve as a proxy for the cumulative energy cost of these processes. There are thus exciting opportunities to use our growing knowledge of factors influencing the efficiency of photosynthesis and respiration to create a step-change in yield potential of globally important crops.Andres Garcia, Oorbessy Gaju, Andrew F. Bowerman, Sally A. Buck, John R. Evans, Robert T. Furbank, Matthew Gilliham, A. Harvey Millar, Barry J. Pogson, Matthew P. Reynolds, Yong-Ling Ruan, Nicolas L. Taylor, Stephen D. Tyerman, and Owen K. Atki
Antidepressant and skeletal muscle relaxant effects of the aqueous extract of the Prosopis cineraria
The aqueous leaves extract of Prosopis cineraria (AEPC) is used traditionally for the treatment of various CNS disorder. The purpose of this study was to evaluate the extract for antidepressant and skeletal muscle relaxant activity. The antidepressant effect of the extract was evaluated using Forced swim test (FST). The immobility periods of control and treated mice were recorded. The antidepressant-like effect of tested compound was compared to that of imipramine (15 mg/kg. p.o). Muscle relaxant property was studied using rotarod apparatus and total fall off time for standard and control group was recorded. Phytochemical screening revealed the presence of saponins, flavonoids, alkaloids, glycosides, tannins and phenolic compounds. The leaf extract at doses of 200 mg/kg significantly decreased the duration of immobility time in FST. The efficacy of tested extract was found to be comparable to that of imipramine. Our results suggested that the aqueous extract of Prosopis cineraria leaves exerts antidepressant-like effect.O extrato aquoso de folhas de Prosopis cineraria (AEPC) Ă© utilizado, tradicionalmente, para o tratamento de vĂĄrias disfunçÔes do SNC. O propĂłsito desse estudo foi avaliar o extrato quanto Ă s atividades antidepressiva e relaxante muscular esquelĂ©tica. O efeito antidepressivo do extrato foi avaliado usando o teste do nado forçado (FST). Registraram-se os perĂodos de imobilidade dos camundongos controle e dos tratados. O efeito antidepressivo do composto testado foi comparado com a imipramina ((15 mg/kg. p.o). A propriedade relaxante muscular foi estudada usando o cilindro giratĂłrio e o tempo total de queda para os grupos padrĂŁo e controle foram registrados. A triagem fitoquĂmica revelou a presença de saponinas, flavonoides, alcaloides, glicosĂdeos, taninos e compostos fenĂłlicos. O extrato da folha em doses de 200 mg/kg diminui significativamente a duração do tempo de imobilidade no FST. A eficĂĄcia do extrato testado foi comparĂĄvel Ă quela da imipramina. Nossos resultados sugeriram que o extrato aquoso das folhas da Prosopis cineraria exerce efeito semelhante ao antidepressivo
- âŠ