2,588 research outputs found

    On variability and spectral distortion of the fluorescent iron lines from black-hole accretion discs

    Full text link
    We investigate properties of iron fluorescent line arising as a result of illumination of a black hole accretion disc by an X-ray source located above the disc surface. We study in details the light-bending model of variability of the line, extending previous work on the subject. We indicate bending of photon trajectories to the equatorial plane, which is a distinct property of the Kerr metric, as the most feasible effect underlying reduced variability of the line observed in several objects. A model involving an X-ray source with a varying radial distance, located within a few central gravitational radii around a rapidly rotating black hole, close to the disc surface, may explain both the elongated red wing of the line profile and the complex variability pattern observed in MCG--6-30-15 by XMM-Newton. We point out also that illumination by radiation which returns to the disc (following the previous reflection) contributes significantly to formation of the line profile in some cases. As a result of this effect, the line profile always has a pronounced blue peak (which is not observed in the deep minimum state in MCG--6-30-15), unless the reflecting material is absent within the innermost 2--3 gravitational radii.Comment: 24 pages, 22 figures. Accepted for publication in MNRA

    Nonthermal X-Rays from Supernova Remnant G330.2+1.0 and the Characteristics of its Central Compact Object

    Full text link
    We present results from our X-ray data analysis of the SNR G330.2+1.0 and its CCO, CXOU J160103.1--513353 (J1601). Using our XMM-Newton and Chandra observations, we find that the X-ray spectrum of J1601 can be described by neutron star atmosphere models (T ~ 2.5--3.7 MK). Assuming the distance of d ~ 5 kpc for J1601 as estimated for SNR G330.2+1.0, a small emission region of R ~ 1--2 km is implied. X-ray pulsations previously suggested by Chandra are not confirmed by the XMM-Newton data, and are likely not real. However, our timing analysis of the XMM-Newton data is limited by poor photon statistics, and thus pulsations with a relatively low amplitude (i.e., an intrinsic pulsed-fraction < 40%) cannot be ruled out. Our results indicate that J1601 is a CCO similar to that in the Cassiopeia A SNR.X-ray emission from SNR G330.2+1.0 is dominated by power law continuum (Gamma ~ 2.1--2.5) which primarily originates from thin filaments along the boundary shell. This X-ray spectrum implies synchrotron radiation from shock-accelerated electrons with an exponential roll-off frequency ~ 2--3 x 10^17 Hz. For the measured widths of the X-ray filaments (D ~ 0.3 pc) and the estimated shock velocity (v_s ~ a few x 10^3 km s^-1), a downstream magnetic field B ~ 10--50 μ\muG is derived. The estimated maximum electron energy E_max ~ 27--38 TeV suggests that G330.2+1.0 is a candidate TeV gamma-ray source. We detect faint thermal X-ray emission in G330.2+1.0. We estimate a low preshock density n_0 ~ 0.1 cm^-3, which suggests a dominant contribution from an inverse Compton mechanism (than the proton-proton collision) to the prospective gamma-ray emission. Follow-up deep radio, X-ray, and gamma-ray observations will be essential to reveal the details of the shock parameters and the nature of particle accelerations in this SNR.Comment: 26 pages, 3 tables, 7 figures (4 color figures), Accepted by Ap

    Simultaneous EUVE/ASCA/RXTE Observations of NGC 5548

    Get PDF
    We present simultaneous observations by EUVE, ASCA, and RXTE of the type~1 Seyfert galaxy NGC 5548. These data indicate that variations in the EUV emission (at 0.2\sim 0.2 keV) appear to lead similar modulations in higher energy (\ga 1 keV) X-rays by \sim10--30 ks. This is contrary to popular models which attribute the correlated variability of the EUV, UV and optical emission in type~1 Seyferts to reprocessing of higher energy radiation. This behavior instead suggests that the variability of the optical through EUV emission is an important driver for the variability of the harder X-rays which are likely produced by thermal Comptonization. We also investigate the spectral characteristics of the fluorescent iron Kα\alpha line and Compton reflection emission. In contrast to prior measurements of these spectral features, we find that the iron Kα\alpha line has a relatively small equivalent width (WKα100W_{K\alpha} \sim 100 eV) and that the reflection component is consistent with a covering factor which is significantly less than unity (Ω/2π0.4\Omega/2\pi \sim 0.4--0.5). Notably, although the 2--10 keV X-ray flux varies by ±25\sim \pm 25% and the derived reflection fraction appears to be constant throughout our observations, the flux in the Fe~Kα\alpha line is also constant. This behavior is difficult to reconcile in the context of standard Compton reflection models.Comment: 13 pages, 6 figures, LaTeX, uses emulateapj.sty and apjfonts.sty, submitted to Ap

    Testing Comptonizing coronae on a long BeppoSAX observation of the Seyfert 1 galaxy NGC 5548

    Get PDF
    We test accurate models of Comptonization spectra over the high quality data of the BeppoSAX long look at NGC 5548, allowing for different geometries of the scattering region, different temperatures of the input soft photon field and different viewing angles. We find that the BeppoSAX data are well represented by a plane parallel or hemispherical corona viewed at an inclination angle of 30^{\circ}. For both geometries the best fit temperature of the soft photons is close to 159+3^{+3}_{-9} eV. The corresponding best fit values of the hot plasma temperature and optical depth are kTekT_{\rm e}\simeq 250--260 keV and τ\tau\simeq 0.16--0.37 for the slab and hemisphere respectively. These values are substantially different from those derived fitting the data with a power-law + cut off approximation to the Comptonization component (kT_{\rm e}\lta 60 keV, τ\tau\simeq 2.4). This is due to the fact that accurate Comptonization spectra in anisotropic geometries show "intrinsic" curvature which reduces the necessity of a high energy cut-off. The Comptonization parameter derived for the slab model {is} larger than predicted for a two phase plane parallel corona in energy balance, suggesting that a more ``photon-starved'' geometry is necessary. The spectral softening detected during a flare which occurred in the central part of the observation corresponds to a decrease of the Comptonization parameter, probably associated with an increase of the soft photon luminosity, the {hard} photon luminosity remaining constant.Comment: 36 pages, 9 figures, accepted by Ap

    X-ray absorption and rapid variability of the dwarf Seyfert nucleus of NGC4395

    Get PDF
    We report the detection of an absorbed central X-ray source and its strong, rapid variability in NGC4395, the least luminous Seyfert nucleus known. The X-ray source exhibits a number of flares with factors of 3-4 flux changes during a half day ASCA observation. Such X-ray variability is in constrast to the behaviour of other low luminosity active galaxies. It provides further support for an accreting black hole model rather than an extreme stellar process in accounting for the nuclear activity of NGC4395. The soft X-ray emission below 3 keV is strongly attenuated by absorption. The energy spectrum in this absorption band shows a dramatic change in response to the variation in continuum luminosity. A variable warm absorber appears to be an explanation for the spectral change. The absorption-corrected 2-10 keV luminosity is 4e39 erg/s for a source distance of 2.6 Mpc, and at 1 keV is one order of magnitude above previous ROSAT estimates. Our X-ray results infer the nuclear source of NGC4395 to be a scaled-down version of higher luminosity Seyfert nuclei, with an intermediate mass (10^4-10^5 Msun) black hole, unlike the nearby low luminosity active galaxies in which underfed massive black holes are suspected to reside.Comment: 12 pages, accepted for publication in MNRA

    WALLABY Early Science - I. The NGC 7162 Galaxy Group

    Full text link
    We present Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) early science results from the Australian Square Kilometre Array Pathfinder (ASKAP) observations of the NGC 7162 galaxy group. We use archival HIPASS and Australia Telescope Compact Array (ATCA) observations of this group to validate the new ASKAP data and the data reduction pipeline ASKAPsoft. We detect six galaxies in the neutral hydrogen (HI) 21-cm line, expanding the NGC 7162 group membership from four to seven galaxies. Two of the new detections are also the first HI detections of the dwarf galaxies, AM 2159-434 and GALEXASC J220338.65-431128.7, for which we have measured velocities of cz=2558cz=2558 and cz=2727cz=2727 km s1^{-1}, respectively. We confirm that there is extended HI emission around NGC 7162 possibly due to past interactions in the group as indicated by the 4040^{\circ} offset between the kinematic and morphological major axes for NGC 7162A, and its HI richness. Taking advantage of the increased resolution (factor of 1.5\sim1.5) of the ASKAP data over archival ATCA observations, we fit a tilted ring model and use envelope tracing to determine the galaxies' rotation curves. Using these we estimate the dynamical masses and find, as expected, high dark matter fractions of fDM0.810.95f_{\mathrm{DM}}\sim0.81-0.95 for all group members. The ASKAP data are publicly available.Comment: 20 pages, 11 figures, accepted for publication in MNRA

    XMM-Newton spectroscopy of high redshift quasars

    Full text link
    We present XMM-Newton X-ray spectra and optical photometry of four high redshift (z=2.96-3.77) quasars, [HB89] 0438-436, [HB89] 2000-330, [SP89] 1107+487 and RX J122135.6+280613; of these four objects the former two are radio-loud, the latter two radio-quiet. Model fits require only a power law with Galactic absorption in each case; additional intrinsic absorption is also needed for [HB89] 0438-436 and RX J122135.6+280613. The spectra are hard (Gamma \~1.7 for [HB89] 0438-436, [HB89] 2000-330 and ~1.4 for RX J122135.6+280613) with the exception of [SP89]~1107+487 which is softer (Gamma ~2.0); the combined Galactic and intrinsic absorption of lower energy X-rays in the latter source is much less significant than in the other three. The two intrinsically unabsorbed sources have greater optical fluxes relative to the X-ray contributions at the observed energies. While there is no need to include reflection or iron line components in the models, our derived upper limits (99% confidence) on these parameters are not stringent; the absence of these features, if confirmed, may be explained in terms of the high power law contribution and/or a potentially lower albedo due to the low disc temperature. However, we note that the power-law spectrum can be produced via mechanisms other than the Comptonization of accretion disc emission by a corona; given that all four of these quasars are radio sources at some level we should also consider the possibility that the X-ray emission originates, at least partially, in a jet.Comment: Accepted for publication in MNRA

    A Structure for Quasars

    Get PDF
    This paper proposes a simple, empirically derived, unifying structure for the inner regions of quasars. This structure is constructed to explain the broad absorption line (BAL) regions, the narrow `associated' ultraviolet and X-ray warm absorbers (NALs); and is also found to explain the broad emission line regions (BELR), and several scattering features, including a substantial fraction of the broad X-ray Iron-K emission line, and the bi-conical extended narrow emission line region (ENLR) structures seen on large kiloparsec scales in Seyfert images. Small extensions of the model to allow luminosity dependent changes in the structure may explain the UV and X-ray Baldwin effects and the greater prevalence of obscuration in low luminosity AGN.Comment: 35 pages, including 8 color figures (figures 4abc are big). Astrophysical Journal, in press. Expanded version of conference paper astro-ph/000516

    Reddening, Emission-Line, and Intrinsic Absorption Properties in the Narrow-Line Seyfert 1 Galaxy Akn 564

    Get PDF
    We use Hubble Space Telescope UV and optical spectra of the narrow-line Seyfert 1 (NLS1) galaxy Akn 564 to investigate its internal reddening and properties of its emission-line and intrinsic UV absorption gas. We find that the extinction curve of Akn 564, derived from a comparison of its UV/optical continuum to that of an unreddened NLS1, lacks a 2200 A bump and turns up towards the UV at a longer wavelength (4000 A) than the standard Galactic, LMC, and SMC curves. However, it does not show the extremely steep rise to 1200 A that characterizes the extinction curve of the Seyfert 1 galaxy NGC 3227. The emission-lines and continuum experience the same amount of reddening, indicating the presence of a dust screen that is external to the narrow-line region (NLR). Echelle spectra from the Space Telescope Imaging Spectrograph show intrinsic UV absorption lines due to Ly-alpha, N V, C IV, Si IV, and Si III, centered at a radial velocity of -190 km/s (relative to the host galaxy). Photoionization models of the UV absorber indicate that it has a sufficient columnand is at a sufficient distance from the nucleus (D > 95 pc) to be the source of the dust screen. Thus, Akn 564 contains a dusty ``lukewarm absorber'' similar to that seen in NGC 3227.Comment: 25 pages, 4 figures. LaTeX with encapsulated postscript figures. Accepted for publication in the Astrophysical Journa
    corecore