251 research outputs found

    Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts

    Get PDF
    The relative merits of three forecast systems addressing the impact of model uncertainty on seasonal/annual forecasts are described. One system consists of a multi-model, whereas two other systems sample uncertainties by perturbing the parametrization of reference models through perturbed parameter and stochastic physics techniques. Ensemble re-forecasts over 1991 to 2001 were performed with coupled climate models started from realistic initial conditions. Forecast quality varies due to the different strategies for sampling uncertainties, but also to differences in initialisation methods and in the reference forecast system. Both the stochastic-physics and perturbed-parameter ensembles improve the reliability with respect to their reference forecast systems, but not the discrimination ability. Although the multi-model experiment has an ensemble size larger than the other two experiments, most of the assessment was done using equally-sized ensembles. The three ensembles show similar levels of skill: significant differences in performance typically range between 5 and 20%. However, a nine-member multi-model shows better results for seasonal predictions with lead times shorter than five months, followed by the stochastic-physics and perturbed-parameter ensembles. Conversely, for seasonal predictions with lead times longer than four months, the perturbed-parameter ensemble gives more often better results. All systems suggest that spread cannot be considered a useful predictor of skill. Annual-mean predictions showed lower forecast quality than seasonal predictions. Only small differences between the systems were found. The full multi-model ensemble has improved quality with respect to all other systems, mainly from the larger ensemble size for lead times longer than four months and annual predictions

    Simulating organic aerosol in Delhi with WRF-Chem using the volatility-basis-set approach: exploring model uncertainty with a Gaussian process emulator

    Get PDF
    The nature and origin of organic aerosol in the atmosphere remain unclear. The gas–particle partitioning of semi-volatile organic compounds (SVOCs) that constitute primary organic aerosols (POAs) and the multigenerational chemical aging of SVOCs are particularly poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as WRF-Chem (Weather Research and Forecasting model with Chemistry), can be a useful tool to describe emissions of POA and its chemical evolution. However, the evaluation of model uncertainty and the optimal model parameterization may be expensive to probe using only WRF-Chem simulations. Gaussian process emulators, trained on simulations from relatively few WRF-Chem simulations, are capable of reproducing model results and estimating the sources of model uncertainty within a defined range of model parameters. In this study, a WRF-Chem VBS parameterization is proposed; we then generate a perturbed parameter ensemble of 111 model runs, perturbing 10 parameters of the WRF-Chem model relating to organic aerosol emissions and the VBS oxidation reactions. This allowed us to cover the model's uncertainty space and to compare outputs from each run to aerosol mass spectrometer observations of organic aerosol concentrations and O:C ratios measured in New Delhi, India. The simulations spanned the organic aerosol concentrations measured with the aerosol mass spectrometer (AMS). However, they also highlighted potential structural errors in the model that may be related to unsuitable diurnal cycles in the emissions and/or failure to adequately represent the dynamics of the planetary boundary layer. While the structural errors prevented us from clearly identifying an optimized VBS approach in WRF-Chem, we were able to apply the emulator in the following two periods: the full period (1–29 May) and a subperiod period of 14:00–16:00 h LT (local time) on 1–29 May. The combination of emulator analysis and model evaluation metrics allowed us to identify plausible parameter combinations for the analyzed periods. We demonstrate that the methodology presented in this study can be used to determine the model uncertainty and to identify the appropriate parameter combination for the VBS approach and hence to provide valuable information to improve our understanding of OA production

    Gβγ and the C Terminus of SNAP-25 Are Necessary for Long-Term Depression of Transmitter Release

    Get PDF
    Short-term presynaptic inhibition mediated by G protein-coupled receptors involves a direct interaction between G proteins and the vesicle release machinery. Recent studies implicate the C terminus of the vesicle-associated protein SNAP-25 as a molecular binding target of Gβγ that transiently reduces vesicular release. However, it is not known whether SNAP-25 is a target for molecular modifications expressing long-term changes in transmitter release probability.This study utilized two-photon laser scanning microscopy for real-time imaging of action potential-evoked [Ca(2+)] increases, in single Schaffer collateral presynaptic release sites in in vitro hippocampal slices, plus simultaneous recording of Schaffer collateral-evoked synaptic potentials. We used electroporation to infuse small peptides through CA3 cell bodies into presynaptic Schaffer collateral terminals to selectively study the presynaptic effect of scavenging the G-protein Gβγ. We demonstrate here that the C terminus of SNAP-25 is necessary for expression of LTD, but not long-term potentiation (LTP), of synaptic strength. Using type A botulinum toxin (BoNT/A) to enzymatically cleave the 9 amino acid C-terminus of SNAP-25 eliminated the ability of low frequency synaptic stimulation to induce LTD, but not LTP, even if release probability was restored to pre-BoNT/A levels by elevating extracellular [Ca(2+)]. Presynaptic electroporation infusion of the 14-amino acid C-terminus of SNAP-25 (Ct-SNAP-25), to scavenge Gβγ, reduced both the transient presynaptic inhibition produced by the group II metabotropic glutamate receptor stimulation, and LTD. Furthermore, presynaptic infusion of mSIRK, a second, structurally distinct Gβγ scavenging peptide, also blocked the induction of LTD. While Gβγ binds directly to and inhibit voltage-dependent Ca(2+) channels, imaging of presynaptic [Ca(2+)] with Mg-Green revealed that low-frequency stimulation only transiently reduced presynaptic Ca(2+) influx, an effect not altered by infusion of Ct-SNAP-25.The C-terminus of SNAP-25, which links synaptotagmin I to the SNARE complex, is a binding target for Gβγ necessary for both transient transmitter-mediated presynaptic inhibition, and the induction of presynaptic LTD

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    The effect of beryllium oxide on retention in JET ITER-like wall tiles

    Get PDF
    Preliminary results investigating the microstructure, bonding and effect of beryllium oxide formation on retention in the JET ITER-like wall beryllium tiles, are presented. The tiles have been investigated by several techniques: Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX), Transmission Electron microscopy (TEM) equipped with EDX and Electron Energy Loss Spectroscopy (EELS), Raman Spectroscopy and Thermal Desorption Spectroscopy (TDS). This paper focuses on results from melted materials of the dump plate tiles in JET. From our results and the literature, it is concluded, beryllium can form micron deep oxide islands contrary to the nanometric oxides predicted under vacuum conditions. The deepest oxides analyzed were up to 2-micron thicknesses. The beryllium Deuteroxide (BeOxDy) bond was found with Raman Spectroscopy. Application of EELS confirmed the oxide presence and stoichiometry. Literature suggests these oxides form at temperatures greater than 700 °C where self-diffusion of beryllium ions through the surface oxide layer can occur. Further oxidation is made possible between oxygen plasma impurities and the beryllium ions now present at the wall surface. Under Ultra High Vacuum (UHV) nanometric Beryllium oxide layers are formed and passivate at room temperature. After continual cyclic heating (to the point of melt formation) in the presence of oxygen impurities from the plasma, oxide growth to the levels seen experimentally (approximately two microns) is proposed. This retention mechanism is not considered to contribute dramatically to overall retention in JET, due to low levels of melt formation. However, this mechanism, thought the result of operation environment and melt formation, could be of wider concern to ITER, dependent on wall temperatures

    Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings

    Get PDF
    The erosion, transport and deposition of tungsten in the outer divertor of JET-ILW has been studied for an HMode discharge with low frequency ELMs. For this specific case with an inter-ELM electron temperature at the strike point of about 20 eV, tungsten sputtering between ELMs is almost exclusively due to beryllium impurity and self-sputtering. However, during ELMs tungsten sputtering due to deuterium becomes important and even dominates. The amount of simulated local deposition of tungsten relative to the amount of sputtered tungsten in between ELMs is very high and reaches values of 99% for an electron density of 5E13 cm3^{-3} at the strike point and electron temperatures between 10 and 30 eV. Smaller deposition values are simulated with reduced electron density. The direction of the B-field significantly influences the local deposition and leads to a reduction if the E×B drift directs towards the scrape-off-layer. Also, the thermal force can reduce the tungsten deposition, however, an ion temperature gradient of about 0.1 eV/mm or larger is needed for a significant effect. The tungsten deposition simulated during ELMs reaches values of about 98% assuming ELM parameters according to free-streaming model. The measured WI emission profiles in between and within ELMs have been reproduced by the simulation. The contribution to the overall net tungsten erosion during ELMs is about 5 times larger than the one in between ELMs for the studied case. However, this is due to the rather low electron temperature in between ELMs, which leads to deuterium impact energies below the sputtering threshold for tungsten

    Impact of fast ions on density peaking in JET : fluid and gyrokinetic modeling

    Get PDF
    The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position rho(t) = 0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile

    Impact of fast ions on density peaking in JET: fluid and gyrokinetic modeling

    Get PDF
    The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/ trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position ρt_{t}=0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile

    Tritium distributions on W-coated divertor tiles used in the third JET ITER-like wall campaign

    Get PDF
    Tritium (T) distributions on tungsten (W)-coated plasma-facing tiles used in the third ITER-like wall campaign (2015–2016) of the Joint European Torus (JET) were examined by means of an imaging plate technique and β-ray induced x-ray spectrometry, and they were compared with the distributions after the second (2013–2014) campaign. Strong enrichment of T in beryllium (Be) deposition layers was observed after the second campaign. In contrast, T distributions after the third campaign was more uniform though Be deposition layers were visually recognized. The one of the possible explanations is enhanced desorption of T from Be deposition layers due to higher tile temperatures caused by higher energy input in the third campaign

    Dynamic modelling of local fuel inventory and desorption in the whole tokamak vacuum vessel for auto-consistent plasma-wall interaction simulations

    Get PDF
    An extension of the SolEdge2D-EIRENE code package, named D-WEE, has been developed to add the dynamics of thermal desorption of hydrogen isotopes from the surface of plasma facing materials. To achieve this purpose, DWEE models hydrogen isotopes implantation, transport and retention in those materials. Before launching autoconsistent simulation (with feedback of D-WEE on SolEdge2D-EIRENE), D-WEE has to be initialised to ensure a realistic wall behaviour in terms of dynamics (pumping or fuelling areas) and fuel content. A methodology based on modelling is introduced to perform such initialisation. A synthetic plasma pulse is built from consecutive SolEdge2D-EIRENE simulations. This synthetic pulse is used as a plasma background for the D-WEE module. A sequence of plasma pulses is simulated with D-WEE to model a tokamak operation. This simulation enables to extract at a desired time during a pulse the local fuel inventory and the local desorption flux density which could be used as initial condition for coupled plasma-wall simulations. To assess the relevance of the dynamic retention behaviour obtained in the simulation, a confrontation to post-pulse experimental pressure measurement is performed. Such confrontation reveals a qualitative agreement between the temporal pressure drop obtained in the simulation and the one observed experimentally. The simulated dynamic retention during the consecutive pulses is also studied
    corecore