356 research outputs found

    Bench-to-bedside review: Adenosine receptors – promising targets in acute lung injury?

    Get PDF
    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening disorders that have substantial adverse effects on outcomes in critically ill patients. ALI/ARDS develops in response to pulmonary or extrapulmonary injury and is characterized by increased leakage from the pulmonary microvasculature and excessive infiltration of polymorphonuclear cells into the lung. Currently, no therapeutic strategies are available to control these fundamental pathophysiological processes in human ALI/ARDS. In a variety of animal models and experimental settings, the purine nucleoside adenosine has been demonstrated to regulate both endothelial barrier integrity and polymorphonuclear cell trafficking in the lung. Adenosine exerts its effects through four G-protein-coupled receptors (A1, A2A, A2B, and A3) that are expressed on leukocytes and nonhematopoietic cells, including endothelial and epithelial cells. Each type of adenosine receptor (AR) is characterized by a unique pharmacological and physiological profile. The development of selective AR agonists and antagonists, as well as the generation of gene-deficient mice, has contributed to a growing understanding of the cellular and molecular processes that are critically involved in the development of ALI/ARDS. Adenosine-dependent pathways are involved in both protective and proinflammatory effects, highlighting the need for a detailed characterization of the distinct pathways. This review summarizes current experimental observations on the role of adenosine signaling in the development of acute lung injury and illustrates that adenosine and ARs are promising targets that may be exploited in the development of innovative therapeutic strategies

    The National Disaster Medical System

    Get PDF
    The Emergency Mobilization Preparedness Board developed plans for improved national preparedness in case of major catastrophic domestic disaster or the possibility of an overseas conventional conflict. Within the health and medical arena, the working group on health developed the concept and system design for the National Disaster Medical System (NDMS). A description of NDMS is presented including the purpose, key components, medical response, patient evacuation, definitive medical care, NDMS activation and operations, and summary and benefits

    CXCR2 in Acute Lung Injury

    Get PDF
    In pulmonary inflammation, recruitment of circulating polymorphonuclear leukocytes is essential for host defense and initiates the following specific immune response. One pathological hallmark of acute lung injury and acute respiratory distress syndrome is the uncontrolled transmigration of neutrophils into the lung interstitium and alveolar space. Thereby, the extravasation of leukocytes from the vascular system into the tissue is induced by chemokines that are released from the site of inflammation. The most relevant chemokine receptors of neutrophils are CXC chemokine receptor (CXCR) 1 and CXCR2. CXCR2 is of particular interest since several studies implicate a pivotal role of this receptor in development and promotion of numerous inflammatory disorders. CXCR2 gets activated by ELR+ chemokines, including MIP-2, KC (rodents) and IL-8 (human). Since multiple ELR+ CXC chemokines act on both receptors—CXCR1 and CXCR2—a pharmacologic agent blocking both receptors seems to be advantageous. So far, several CXCR1/2 antagonists have been developed and have been tested successfully in experimental studies. A newly designed CXCR1 and CXCR2 antagonist can be orally administered and was for the first time found efficient in humans. This review highlights the role of CXCR2 in acute lung injury and discusses its potential as a therapeutic target

    Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury

    Get PDF
    During renal ischemia-reperfusion, local and distant tissue injury is caused by an influx of neutrophils into the affected tissues. Here we measured the kinetics of margination and transmigration of neutrophils in vivo in the kidney and lungs following renal ischemia-reperfusion. After bilateral renal injury, kidney neutrophil content increased threefold at 24 h. The neutrophils were found primarily in the interstitium and to a lesser degree marginated to the vascular endothelium. These interstitial neutrophils had significantly lower levels of intracellular IFN-γ, IL-4, IL-6, and IL-10 a tendency for decreased amounts of IL-4 and TNF-α compared to the marginated neutrophils. Localization of the neutrophils to the kidney interstitium was confirmed by high resolution microscopy and these sites of transmigration were directly associated with areas of increased vascular permeability. Activation of the adenosine 2A receptor significantly decreased both kidney neutrophil transmigration by about half and vascular permeability by about a third. After unilateral renal ischemia-reperfusion, the unclipped kidney and lungs did not accumulate interstitial neutrophils or have increased vascular permeability despite a marked increase of neutrophil margination in the lungs. Our findings suggest there is a sequential recruitment and transmigration of neutrophils from the vasculature into the kidney interstitium at the site of tissue injury following renal ischemia-reperfusion

    Aplikasi Konsep Personal Knowledge Management (PKM) dengan Social Web

    Full text link
    This study discusses the impact of social media to the development of personal knowledge management (PKM). Here the author describeS the factual condition of the company that useS social media as a means of personal knowledge management. Furthermore, these interaction patterns have significant impact on the organization. The purpose of this article is to analyze the application of personal knowledge managementconcept, combined with the social media concept that focuses on social networks with the consideration that they are widespreadly used by the public. Plus the emergence of social networking sites are increasingly new added value to the development of social media. The method used is literature study obtained from the online journals, articles and text books. The result of this study is expected to expand the use of social networking as a means of personal knowledge management in the organization

    P2Y₆ receptor inhibition perturbs CCL2-evoked signalling in human monocytic and peripheral blood mononuclear cells.

    Get PDF
    The chemokine CCL2 serves to target circulating monocytes and other leukocytes to tissue during innate immune responses, and modulates the progression of chronic inflammatory disease through activation of the receptor CCR2. Here, we show that co-activation of the P2Y₆ purinergic receptor (encoded by P2RY₆) occurs when THP-1 cells and human peripheral blood mononuclear cells sense CCL2 through CCR2. Furthermore, P2Y₆ receptor activation accounts for ∼80% of the intracellular Ca²⁺ signal evoked by CCL2. Scavenging extracellular nucleotides with apyrase caused a fourfold reduction in THP-1 sensitivity to CCL2, whereas inhibition of CD39-like ectonucleotidases potentiated CCL2-evoked Ca²⁺ responses. Pharmacological inhibition of P2Y₆ impaired CCL2-evoked Ca²⁺ signalling and chemotaxis in peripheral blood mononuclear cells and THP-1 cells. Furthermore, stable P2Y₆ receptor knockdown (of twofold) in THP-1 cells impaired CCL2-evoked Ca²⁺ signalling, chemotaxis and adhesion to TNFα-treated HUVECs. We demonstrate that THP-1 cells rapidly secrete ATP during signalling downstream of the CCL2-CCR2 axis and suggest this might act as a mechanism for P2Y₆ receptor co-activation following CCL2 activation of the CCR2 receptor. The discovery that P2Y₆ receptor mediates leukocyte responsiveness to CCL2 represents a new mechanism by which to modulate CCL2 signals

    Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity

    Get PDF
    Endothelial cell–cell junctions regulate vascular permeability, vasculogenesis, and angiogenesis. Familial cerebral cavernous malformations (CCMs) in humans result from mutations of CCM2 (malcavernin, OSM, MGC4607), PDCD10 (CCM3), or KRIT1 (CCM1), a Rap1 effector which stabilizes endothelial cell–cell junctions. Homozygous loss of KRIT1 or CCM2 produces lethal vascular phenotypes in mice and zebrafish. We report that the physical interaction of KRIT1 and CCM2 proteins is required for endothelial cell–cell junctional localization, and lack of either protein destabilizes barrier function by sustaining activity of RhoA and its effector Rho kinase (ROCK). Protein haploinsufficient Krit1+/− or Ccm2+/− mouse endothelial cells manifested increased monolayer permeability in vitro, and both Krit1+/− and Ccm2+/− mice exhibited increased vascular leak in vivo, reversible by fasudil, a ROCK inhibitor. Furthermore, we show that ROCK hyperactivity occurs in sporadic and familial human CCM endothelium as judged by increased phosphorylation of myosin light chain. These data establish that KRIT1–CCM2 interaction regulates vascular barrier function by suppressing Rho/ROCK signaling and that this pathway is dysregulated in human CCM endothelium, and they suggest that fasudil could ameliorate both CCM disease and vascular leak

    Macrophage CD74 contributes to MIF-induced pulmonary inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MIF is a critical mediator of the host defense, and is involved in both acute and chronic responses in the lung. Neutralization of MIF reduces neutrophil accumulation into the lung in animal models. We hypothesized that MIF, in the alveolar space, promotes neutrophil accumulation via activation of the CD74 receptor on macrophages.</p> <p>Methods</p> <p>To determine whether macrophage CD74 surface expression contributes MIF-induced neutrophil accumulation, we instilled recombinant MIF (r-MIF) into the trachea of mice in the presence or absence of anti-CD74 antibody or the MIF specific inhibitor, ISO-1. Using macrophage culture, we examined the downstream pathways of MIF-induced activation that lead to neutrophil accumulation.</p> <p>Results</p> <p>Intratracheal instillation of r-MIF increased the number of neutrophils as well as the concentration of macrophage inflammatory protein 2 (MIP-2) and keratinocyte-derived chemokine (KC) in BAL fluids. CD74 was found to be expressed on the surface of alveolar macrophages, and MIF-induced MIP-2 accumulation was dependent on p44/p42 MAPK in macrophages. Anti-CD74 antibody inhibited MIF-induced p44/p42 MAPK phosphorylation and MIP-2 release by macrophages. Furthermore, we show that anti-CD74 antibody inhibits MIF-induced alveolar accumulation of MIP-2 (control IgG vs. CD74 Ab; 477.1 ± 136.7 vs. 242.2 ± 102.2 pg/ml, p < 0.05), KC (1796.2 ± 436.1 vs. 1138.2 ± 310.2 pg/ml, p < 0.05) and neutrophils (total number of neutrophils, 3.33 ± 0.93 × 10<sup>4 </sup>vs. 1.90 ± 0.61 × 10<sup>4</sup>, p < 0.05) in our mouse model.</p> <p>Conclusion</p> <p>MIF-induced neutrophil accumulation in the alveolar space results from interaction with CD74 expressed on the surface of alveolar macrophage cells. This interaction induces p44/p42 MAPK activation and chemokine release. The data suggest that MIF and its receptor, CD74, may be useful targets to reduce neutrophilic lung inflammation, and acute lung injury.</p
    corecore