8 research outputs found

    Aerosol dynamics simulations of the anatomical variability of e-cigarette particle and vapor deposition in a stochastic lung

    Get PDF
    Electronic cigarette (EC) aerosols are typically composed of a mixture of nicotine, glycerine (VG), propylene glycol (PG), water, acidic stabilizers and a variety of flavors. Inhalation of e-cigarette aerosols is characterized by a continuous modification of particle diameters, concentrations, composition and phase changes, and smoker-specific inhalation conditions, i.e. puffing, mouthhold and bolus inhalation. The dynamic changes of inhaled e-cigarette droplets in the lungs due to coagulation, conductive heat and diffusive heat/convective vapor transport and particle phase chemistry are described by the Aerosol Dynamics in Containment (ADiC) model. For the simulation of the variability of inhaled particle and vapor deposition, the ADiC model is coupled with the IDEAL Monte Carlo code, which is based on a stochastic, asymmetric airway model of the human lung. We refer to the coupled model as "IDEAL/ADIC_v1.0". In this study, two different ecigarettes were compared, one without any acid ("no acid") and the other one with an acidic regulator (benzoic acid) to establish an initial pH level of about 7 ("lower pH"). Corresponding deposition patterns among human airways comprise total and compound-specific number and mass deposition fractions, distinguishing between inhalation and exhalation phases and condensed and vapor phases. Note that the inhaled EC aerosol is significantly modified in the oral cavity prior to inhalation into the lungs. Computed deposition fractions demonstrate that total particle mass is preferentially deposited in the alveolar region of the lung during inhalation. While nicotine deposits prevalently in the condensed phase for the "lower pH" case, vapor phase deposition is dominating the "no acid" case. The significant statistical fluctuations of the particle and vapor deposition patterns illustrate the inherent anatomical variability of the human lung structure.Peer reviewe

    The degree of inhomogeneity of the absorbed cell nucleus doses in the bronchial region of the human respiratory tract

    Get PDF
    Inhalation of short-lived radon progeny is an important cause of lung cancer. To characterize the absorbed doses in the bronchial region of the airways due to inhaled radon progeny, mostly regional lung deposition models, like the Human Respiratory Tract Model (HRTM) of the International Commission on Radiological Protection, are used. However, in this model the site specificity of radiation burden in the airways due to deposition and fast airway clearance of radon progeny is not described. Therefore, in the present study, the Radact version of the stochastic lung model was used to quantify the cellular radiation dose distribution at airway generation level and to simulate the kinetics of the deposited radon progeny resulting from the moving mucus layer. All simulations were performed assuming an isotope ratio typical for an average dwelling, and breathing mode characteristic of a healthy adult sitting man. The study demonstrates that the cell nuclei receiving high doses are non-uniformly distributed within the bronchial airway generations. The results revealed that the maximum of the radiation burden is at the first few bronchial airway generations of the respiratory tract, where most of the lung carcinomas of former uranium miners were found. Based on the results of the present simulations, it can be stated that regional lung models may not be fully adequate to describe the radiation burden due to radon progeny. A more realistic and precise calculation of the absorbed doses from the decay of radon progeny to the lung requires deposition and clearance to be simulated by realistic models of airway generations.(VLID)469743

    Literaturverzeichnis

    No full text
    corecore