42 research outputs found

    The Healthy Food Slide Rule (HFSR): A Nutrition Education Tool for Children

    Get PDF
    The Healthy Food Slide Rule (HFSR) is a new educational tool designed specifically for use by school children in grades 4-6. The HFSR teaches the importance of including the 5 food groups and the importance of complying with appropriate portion sizes as presented in MyPyramid.1, 2 The portion size information included in the HFSR combines the healthy eating and physical activity messages offered by MyPyramid for Kids.3, 4 The new tool can be easily incorporated into existing math lessons (weights, measures, and fractions), into language arts lessons, or into science lessons.

    Absence of the Z-disc protein α-actinin-3 impairs the mechanical stability of Actn3KO mouse fast-twitch muscle fibres without altering their contractile properties or twitch kinetics

    Get PDF
    Background: A common polymorphism (R577X) in the ACTN3 gene results in the complete absence of the Z-disc protein α-actinin-3 from fast-twitch muscle fibres in ~ 16% of the world’s population. This single gene polymorphism has been subject to strong positive selection pressure during recent human evolution. Previously, using an Actn3KO mouse model, we have shown in fast-twitch muscles, eccentric contractions at L0 + 20% stretch did not cause eccentric damage. In contrast, L0 + 30% stretch produced a significant ~ 40% deficit in maximum force; here, we use isolated single fast-twitch skeletal muscle fibres from the Actn3KO mouse to investigate the mechanism underlying this. Methods: Single fast-twitch fibres are separated from the intact muscle by a collagenase digest procedure. We use label-free second harmonic generation (SHG) imaging, ultra-fast video microscopy and skinned fibre measurements from our MyoRobot automated biomechatronics system to study the morphology, visco-elasticity, force production and mechanical strength of single fibres from the Actn3KO mouse. Data are presented as means ± SD and tested for significance using ANOVA. Results: We show that the absence of α-actinin-3 does not affect the visco-elastic properties or myofibrillar force production. Eccentric contractions demonstrated that chemically skinned Actn3KO fibres are mechanically weaker being prone to breakage when eccentrically stretched. Furthermore, SHG images reveal disruptions in the myofibrillar alignment of Actn3KO fast-twitch fibres with an increase in Y-shaped myofibrillar branching. Conclusions: The absence of α-actinin-3 from the Z-disc in fast-twitch fibres disrupts the organisation of the myofibrillar proteins, leading to structural weakness. This provides a mechanistic explanation for our earlier findings that in vitro intact Actn3KO fast-twitch muscles are significantly damaged by L0 + 30%, but not L0 + 20%, eccentric contraction strains. Our study also provides a possible mechanistic explanation as to why α-actinin-3-deficient humans have been reported to have a faster decline in muscle function with increasing age, that is, as sarcopenia reduces muscle mass and force output, the eccentric stress on the remaining functional α-actinin-3 deficient fibres will be increased, resulting in fibre breakages

    New Particle Formation from the Vapor Phase : From Barrier-Controlled Nucleation to the Collisional Limit

    Get PDF
    Studies of vapor phase nucleation have largely been restricted to one of two limiting cases—nucleation controlled by a substantial free energy barrier or the collisional limit where the barrier is negligible. For weakly bound systems, exploring the transition between these regimes has been an experimental challenge, and how nucleation evolves in this transition remains an open question. We overcome these limitations by combining complementary Laval expansion experiments, providing new particle formation data for carbon dioxide over a uniquely broad range of conditions. Our experimental data together with a kinetic model using rate constants from high-level quantum chemical calculations provide a comprehensive picture of new particle formation as nucleation transitions from a barrier-dominated process to the collisional limit.Peer reviewe

    Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits

    Get PDF
    The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located nearNEDD4LandSLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (R(g)ranging from 0.11 to 0.76, P-values Author summary Although twin studies have shown that body mass index (BMI) is highly heritable, many common genetic variants involved in the development of BMI have not yet been identified, especially in children. We studied associations of more than 40 million genetic variants with childhood BMI in 61,111 children aged between 2 and 10 years. We identified 25 genetic variants that were associated with childhood BMI. Two of these have not been implicated for BMI previously, located close to the genesNEDD4LandSLC45A3. We also show that the genetic background of childhood BMI overlaps with that of birth weight, adult BMI, waist-to-hip-ratio, diastolic blood pressure, type 2 diabetes, and age at menarche. Our results suggest that the biological processes underlying childhood BMI largely overlap with those underlying adult BMI. However, the overlap is not complete. Additionally, the genetic backgrounds of childhood BMI and other cardio-metabolic phenotypes are overlapping. This may mean that the associations of childhood BMI and later cardio-metabolic outcomes are partially explained by shared genetics, but it could also be explained by the strong association of childhood BMI with adult BMI.Peer reviewe

    Homogeneous nucleation of carbon dioxide in supersonic nozzles II : molecular dynamics simulations and properties of nucleating clusters

    Get PDF
    Large scale molecular dynamics simulations of the homogeneous nucleation of carbon dioxide in an argon atmosphere were carried out at temperatures between 75 and 105 K. Extensive analyses of the nucleating clusters' structural and energetic properties were performed to quantify these details for the supersonic nozzle experiments described in the first part of this series [Dingilian et al., Phys. Chem. Chem. Phys., 2020, 22, 19282-19298]. We studied ten different combinations of temperature and vapour pressure, leading to nucleation rates of 10(23)-10(25) cm(-3) s(-1). Nucleating clusters possess significant excess energy from monomer capture, and the observed cluster temperatures during nucleation - on both sides of the critical cluster size - are higher than that of the carrier gas. Despite strong undercooling with respect to the triple point, most clusters are clearly liquid-like during the nucleation stage. Only at the lowest simulation temperatures and vapour densities, clusters containing over 100 molecules are able to undergo a second phase transition to a crystalline solid. The formation free energies retrieved from the molecular dynamics simulations were used to improve the classical nucleation theory by introducing a Tolman-like term into the classical liquid-drop model expression for the formation free energy. This simulation-based theory predicts the simulated nucleation rates perfectly, and improves the prediction of the experimental rates compared to self-consistent classical nucleation theory.Peer reviewe

    Homogeneous nucleation of carbon dioxide in supersonic nozzles I : experiments and classical theories

    Get PDF
    We studied the homogeneous nucleation of carbon dioxide in the carrier gas argon for concentrations of CO(2)ranging from 2 to 39 mole percent using three experimental methods. Position-resolved pressure trace measurements (PTM) determined that the onset of nucleation occurred at temperatures between 75 and 92 K with corresponding CO(2)partial pressures of 39 to 793 Pa. Small angle X-ray scattering (SAXS) measurements provided particle size distributions and aerosol number densities. Number densities of approximately 10(12)cm(-3), and characteristic times ranging from 6 to 13 mu s, resulted in measured nucleation rates on the order of 5 x 10(17)cm(-3)s(-1), values that are consistent with other nucleation rate measurements in supersonic nozzles. Finally, we used Fourier transform infrared (FTIR) spectroscopy to identify that the condensed CO(2)particles were crystalline cubic solids with either sharp or rounded corners. Molecular dynamics simulations, however, suggest that CO(2)forms liquid-like critical clusters before transitioning to the solid phase. Furthermore, the critical clusters are not in thermal equilibrium with the carrier gas. Comparisons with nucleation theories were therefore made assuming liquid-like critical clusters and incorporating non-isothermal correction factors.Peer reviewe

    Rapid Diagnosis of Bacterial Meningitis by Real-Time PCR and Fluorescence In Situ Hybridization

    No full text
    Real-time PCR and fluorescence in situ hybridization (FISH) were evaluated as rapid methods for the diagnosis of bacterial meningitis and compared to standard diagnostic procedures. For PCR, a LightCycler approach was chosen, implementing eubacterial and specific PCR assays for the most relevant bacteria. For FISH, a similar probe set containing eubacterial and specific probes was composed of published and newly designed probes. Both methods were evaluated by use of cerebrospinal fluid (CSF) samples from patients with suspected bacterial meningitis. For all microscopy- and culture-positive samples (n = 28), the eubacterial PCR was positive. In addition, all identifiable pathogens were detected with specific PCR assays, according to an algorithm based on the Gram stain. The FISH method detected the pathogen in 13 of 18 positive samples. While the FISH method remained negative for all microscopy- and culture-negative samples (n = 113), the eubacterial PCR was positive for five of these samples. Sequencing of the amplicon revealed the presence of Neisseria meningitidis, Streptococcus agalactiae, and Haemophilus influenzae in three of these five samples. In addition, samples with discordant results by culture and microscopy were successfully investigated by PCR (10 samples) and FISH (5 samples). In conclusion, PCR is a highly sensitive tool for rapid diagnosis of bacterial meningitis. FISH is less sensitive but is useful for the identification of CSF samples showing bacteria in the Gram stain. Based on our results, an approach for laboratory diagnosis of meningitis including PCR and FISH is discussed

    Single muscle fibre biomechanics and biomechatronics : the challenges, the pitfalls and the future

    No full text
    Interest in muscle biomechanics is growing with availabilities of patient biopsies and animal models related to muscle diseases, muscle wasting (sarcopenia, cachexia), exercise and drug effects. However, development of technologies or facilitated systems required to measure biomechanical and contractile properties of single fibres has not kept pace with this demand. Most studies use manual mechatronics systems that have not changed in decades and are confined to a few labs worldwide. Available commercial systems are expensive and limited in versatility, throughput and user-friendliness. We review major standard systems available from research labs and commercial sources, and benchmark those to our recently developed automated MyoRobot biomechatronics platform that provides versatility to cover multiple organ scales, is flexible in programming for active/passive muscle biomechanics using custom-made graphics user interfaces, employs on-the-fly data analyses and does not rely on external research microscopes. With higher throughput, this system blends Industry 4.0 automation principles into myology
    corecore