1,574 research outputs found

    Orphaned Protostars

    Full text link
    We explore the origin of a population of distant companions (~1000 - 5000 AU) to Class I protostellar sources recently found by Connelley and co-workers, who noted that the companion fraction diminished as the sources evolved. Here we present N-body simulations of unstable triple systems embedded in dense cloud cores. Many companions are ejected into unbound orbits and quickly escape, but others are ejected with insufficient momentum to climb out of the potential well of the cloud core and associated binary. These loosely bound companions reach distances of many thousands of AU before falling back and eventually being ejected into escapes as the cloud cores gradually disappear. We use the term orphans to denote protostellar objects that are dynamically ejected from their placental cloud cores, either escaping or for a time being tenuously bound at large separations. Half of all triple systems are found to disintegrate during the protostellar stage, so if multiple systems are a frequent outcome of the collapse of a cloud core, then orphans should be common. Bound orphans are associated with embedded close protostellar binaries, but escaping orphans can travel as far as ~0.2 pc during the protostellar phase. The steep climb out of a potential well ensures that orphans are not kinematically distinct from young stars born with a less violent pre-history. The identification of orphans outside their heavily extincted cloud cores will allow the detailed study of protostars high up on their Hayashi tracks at near-infrared and in some cases even at optical wavelengths.Comment: 16 pages, 5 figure

    Wide-field Infrared Survey Explorer Observations of Young Stellar Objects in the Western Circinus Molecular Cloud

    Get PDF
    The Wide-field Infrared Survey Explorer has uncovered a population of young stellar objects in the Western Circinus molecular cloud. Images show the YSOs to be clustered into two main groups that are coincident with dark filamentary structure in the nebulosity. Analysis of photometry shows numerous Class I and II objects. The locations of several of these objects are found to correspond to known dense cores and CO outflows. Class I objects tend to be concentrated in dense aggregates, and Class II objects more evenly distributed throughout the region.Comment: 25 pages, including 4 figures, 1 table; accepted for publication in The Astrophysical Journal Letter

    High Resolution Near-Infrared Spectroscopy of FUors and FUor-like stars

    Full text link
    We present new high resolution (R=18,000) near-infrared spectroscopic observations of a sample of classical FU Orionis stars (FUors) and other young stars with FUor characteristics that are sources of Herbig-Haro flows. Spectra are presented for the region 2.203 - 2.236 microns which is rich in absorption lines sensitive to both effective temperatures and surface gravities of stars. Both FUors and FUor-like stars show numerous broad and weak unidentified spectral features in this region. Spectra of the 2.280 - 2.300 micron region are also presented, with the 2.2935 micron v=2-0 CO absorption bandhead being clearly the strongest feature seen in the spectra all FUors and Fuor-like stars. A cross-correlation analysis shows that FUor and FUor-like spectra in the 2.203 - 2.236 micron region are not consistent with late-type dwarfs, giants, nor embedded protostars. The cross-correlations also show that the observed FUor-like Herbig-Haro energy sources have spectra that are substantively similar to those of FUors. Both object groups also have similar near-infrared colors. The large line widths and double-peaked nature of the spectra of the FUor-like stars are consistent with the established accretion disk model for FUors, also consistent with their near-infrared colors. It appears that young stars with FUor-like characteristics may be more common than projected from the relatively few known classical FUors.Comment: 21 pages, 4 figures, accepted by The Astronomical Journa

    Herbig-Haro flows in B335

    Full text link
    We have observed optical (Halpha and [SII]) and near-IR (S(1) line of H2) deep fields and taken optical spectra using the 2.56m NOT, as well as a near-UV deep field (U band) using the 3.58m NTT. In addition we present new SPITZER (IRAC and MIPS) mid-IR observations. We use previous Halpha and S(1) observations taken 15 and 9 years earlier to make proper motion maps. We then investigate the shock physics by matching our spectra with planar shock models. We discover six new HH objects in B335. From proper motions we find an optically bright, roughly E-W oriented group with high space velocities (200-280 km/s) and a near-IR bright, slower group (15-75 km/s) moving to the ESE. We also find a system of at least 15 H2 knots in the western lobe. This (WNW) counterflow suggests the possibility of a binary outflow source, giving rise to two outflow axes with slightly different orientations. We find that the E-W flow is symmetrical with evidence for two outbursts. We make the first detection of [OI] 6300/63 in HH119 B and Hbeta in HH119 A and B and find their extinctions to be AV~1.4 and 4.4, respectively. HH119 A is found to expand much faster than expected from linear expansion with distance from the outflow source. Using planar shock models we find shock velocities of ~60 km/s (A) and ~35 km/s (B and C). This agrees with A being of higher excitation than B and C. In our U image we detect three of the HH objects and propose that the emission arise from the [OII] 3728 line and the blue continuum. New SPITZER observations show most of the HH objects at 4.5 micron and a E-W elongated hour-glass shaped structure at the outflow source. Even at 24 micron it is not clear whether most of the light is direct or reflected.Comment: 23 pages, 15 figures, accepted in A&

    V1647 ORIONIS: Keck/Nirspec 2 MICRON Echelle Observations

    Full text link
    We present new Keck II NIRSPEC high-spectral resolution 2 um echelle observations of the young eruptive variable star V1647 Orionis. This star went into outburst in late 2003 and faded to its pre-outburst brightness after approximately 26 months. V1647 Orionis is the illuminating star of McNeil's Nebula and is located near M 78 in the Lynds 1630 dark cloud. Our spectra have a resolving power of approximately 18,000 and allow us to study in detail the weak absorption features present on the strong near-IR veiled continuum. An analysis of the echelle orders containing Mg I (2.1066 um) and Al I (2.1099 um), Br-gamma (2.1661 um), the Na I doublet (2.206 and 2.209 um), and the CO overtone bandhead (2.2935 um) gives us considerable information on the physical and geometric characteristics of the regions producing these spectral features. We find that, at high-spectral resolution, V1647 Orionis in quiescence resembles a significant number of FU Orionis type eruptive variables and does not appear similar to the quiescent EX Lupi variables observed. This correspondence is discussed and implications for the evolutionary state of the star are considered.Comment: 37 pages, 3 Tables, 17 Figure

    A Universal Stellar Initial Mass Function? A Critical Look at Variations

    Full text link
    Few topics in astronomy initiate such vigorous discussion as whether or not the initial mass function (IMF) of stars is universal, or instead sensitive to the initial conditions of star formation. The distinction is of critical importance: the IMF influences most of the observable properties of stellar populations and galaxies, and detecting variations in the IMF could provide deep insights into the process by which stars form. In this review, we take a critical look at the case for IMF variations, with a view towards whether other explanations are sufficient given the evidence. Studies of the field, local young clusters and associations, and old globular clusters suggest that the vast majority were drawn from a "universal" IMF: a power-law of Salpeter index (Γ=1.35\Gamma=1.35) above a few solar masses, and a log normal or shallower power-law (Γ00.25\Gamma \sim 0-0.25) between a few tenths and a few solar masses (ignoring the effects of unresolved binaries). The shape and universality of the IMF at the stellar-substellar boundary is still under investigation and uncertainties remain large, but most observations are consistent with a IMF that declines (Γ<0.5\Gamma < -0.5) well below the hydrogen burning limit. Observations of resolved stellar populations and the integrated properties of most galaxies are also consistent with a "universal IMF", suggesting no gross variations in the IMF over much of cosmic time. There are indications of "non-standard" IMFs in specific local and extragalactic environments, which clearly warrant further study. Nonetheless, there is no clear evidence that the IMF varies strongly and systematically as a function of initial conditions after the first few generations of stars.Comment: 49 pages, 5 figures, to appear in Annual Reviews of Astronomy and Astrophysics (2010, volume 48

    The Evolution of the Multiplicity of Embedded Protostars II: Binary Separation Distribution & Analysis

    Full text link
    We present the Class I protostellar binary separation distribution based on the data tabulated in the companion paper. We verify the excess of Class I binary stars over solar-type main-sequence stars, especially at separations beyond 500 AU. Although our sources are in nearby star forming regions distributed across the entire sky (including Orion), none of our objects are in a high stellar density environment. The binary separation distribution changes significantly during the Class I phase, and the binary frequency at separations greater than 1000 AU declines steadily with respect to spectral index. Despite these changes, the binary frequency remains constant until the end of the Class I phase, when it drops sharply. We propose a scenario to account for the changes in the Class I binary separation distribution. This scenario postulates that companions with a separation greater than ~1000 AU were ejected during the Class 0 phase, but remain gravitationally bound due to the mass of the envelope. As the envelope dissipates, these companions become unbound and the binary frequency at wide separations declines. This scenario predicts that a large number of Class 0 objects should be non-hierarchical multiple systems, and that many Class I YSOs with a widely separated companion should also have a very close companion. We also find that Class I protostars are not dynamically pristine, and have experienced dynamical evolution before they are visible as Class I objects. For the first time, evidence is presented showing that the Class I binary frequency and the binary separation distribution strongly depend on the star forming environment. The reason for this dependence remains unclear.Comment: 33 pages, 16 figures, accepted by the Astronomical Journa

    The star formation environment of the FU Ori type star V582 Aur

    Get PDF
    We have studied the environment of the FU Ori type star V582 Aur. Our aim is to explore the star-forming region associated with this young eruptive star. Using slitless spectroscopy we searched for H alpha emission stars within a field of 11.5arcmin \times 11.5arcmin, centred on V582 Aur. Based on UKIDSS and Spitzer Space Telescope data we further selected infrared-excess young stellar object candidates. In all, we identified 68 candidate low-mass young stars, 16 of which exhibited H alpha emission in the slitless spectroscopic images. The colour-magnitude diagram of the selected objects, based on IPHAS data, suggests that they are low-mass pre-main-sequence stars associated with the Aur OB 1 association, located at a distance of 1.3 kpc from the Sun. The bright-rimmed globules in the local environment of V582 Aur probably belong to the dark cloud LDN~1516. Our results suggest that star formation in these globules might have been triggered by the radiation field of a few hot members of Aur OB 1. The bolometric luminosity of V582 Aur, based on archival photometric data and on the adopted distance, is 150-320 Lsun.Comment: 10 pages, 8 figures, 3 tables. Accepted for publication by MNRA
    corecore