106 research outputs found

    Inter-annual variability of soil respiration in wet shrublands:do plants modulate its sensitivity to climate?

    Get PDF
    Understanding the response of soil respiration to climate variability is critical to formulate realistic predictions of future carbon (C) fluxes under different climate change scenarios. There is growing evidence that the influence of long-term climate variability in C fluxes from terrestrial ecosystems is modulated by adjustments in the aboveground–belowground links. Here, we studied the inter-annual variability in soil respiration from a wet shrubland going through successional change in North Wales (UK) during 13 years. We hypothesised that the decline in plant productivity observed over a decade would result in a decrease in the apparent sensitivity of soil respiration to soil temperature, and that rainfall variability would explain a significant fraction of the inter-annual variability in plant productivity, and consequently, in soil respiration, due to excess-water constraining nutrient availability for plants. As hypothesised, there were parallel decreases between plant productivity and annual and summer CO2 emissions over the 13-year period. Soil temperatures did not follow a similar trend, which resulted in a decline in the apparent sensitivity of soil respiration to soil temperature (apparent Q10 values decreased from 9.4 to 2.8). Contrary to our second hypothesis, summer maximum air temperature rather than rainfall was the climate variable with the greatest influence on aboveground biomass and annual cumulative respiration. Since summer air temperature and rainfall were positively associated, the greatest annual respiration values were recorded during years of high rainfall. The results suggest that adjustments in plant productivity might have a critical role in determining the long-term-sensitivity of soil respiration to changing climate conditions

    Shrubland primary production and soil respiration diverge along European climate gradient

    Get PDF
    imbalance p paper contact with: Marc Estiarte, [email protected] and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain uncertain. Here we show the responses of ecosystem C to 8-12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes of aNPP and Rs in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Warming had no consistent effect on aNPP across the climate gradient, but suppressed Rs more at the drier sites. Our findings suggest that above- and belowground C fluxes can decouple, and provide no evidence of acclimation to environmental change at a decadal timescale. aNPP and Rs especially differed in their sensitivity to drought and warming, with belowground processes being more sensitive to environmental change

    Global meta-analysis of soil hydraulic properties on the same soils with differing land use

    Get PDF
    Global land use change has resulted in more pasture and cropland, largely at the expense of woodlands, over the last 300 years. How this change affects soil hydraulic function with regard to feedbacks to the hydrological cycle is unclear for earth system modelling (ESM). Pedotransfer functions (PTFs) used to predict soil hydraulic conductivity (K) take no account of land use. Here, we synthesize >800 measurements from around the globe from sites that measured near-saturated soil hydraulic conductivity, or infiltration, at the soil surface, on the same soil type at each location, but with differing land use, woodland (W), grassland (G) and cropland (C). We found that texture based PTFs predict K reasonably well for cropland giving unbiased results, but increasingly underestimate K in grassland and woodland. In native woodland and grassland differences in K can usually be accounted for by differences in bulk density. However, heavy grazing K responses can be much lower indicating compaction likely reduces connectivity. We show that the K response ratios (RR) between land uses vary with cropland (C/W = 0.45 [W/C = 2.2]) and grassland (G/W = 0.63 [W/G = 1.6]) having about half the K of woodland.publishedVersionacceptedVersio

    Resistance of soil protein depolymerization rates to eight years of elevated CO2, warming, and summer drought in a temperate heathland

    Get PDF
    Soil N availability for plants and microorganisms depends on the breakdown of soil polymers such as proteins into smaller, assimilable units by microbial extracellular enzymes. Changing climatic conditions are expected to alter protein depolymerization rates over the next decades, and thereby affect the potential for plant productivity. We here tested the effect of increased CO2 concentration, temperature, and drought frequency on gross rates of protein depolymerization, N mineralization, microbial amino acid and ammonium uptake using 15N pool dilution assays. Soils were sampled in fall 2013 from the multifactorial climate change experiment CLIMAITE that simulates increased CO2 concentration, temperature, and drought frequency in a fully factorial design in a temperate heathland. Eight years after treatment initiation, we found no significant effect of any climate manipulation treatment, alone or in combination, on protein depolymerization rates. Nitrogen mineralization, amino acid and ammonium uptake showed no significant individual treatment effects, but significant interactive effects of warming and drought. Combined effects of all three treatments were not significant for any of the measured parameters. Our findings therefore do not suggest an accelerated release of amino acids from soil proteins in a future climate at this site that could sustain higher plant productivity

    Enhanced priming of old, not new soil carbon at elevated atmospheric CO2

    Get PDF
    Rising atmospheric CO2 concentrations accompanied by global warming and altered precipitation patterns calls for assessment of long-term effects of these global changes on carbon (C) dynamics in terrestrial ecosystems, as changes in net C exchange between soil and atmosphere will impact the atmospheric CO2 concentration profoundly. In many ecosystems, including the heath/grassland system studied here, increased plant production at elevated CO2 increase fresh C input from litter and root exudates to the soil and concurrently decrease soil N availability. Supply of labile C to the soil may accelerate the decomposition of soil organic C (SOC), a phenomenon termed ‘the priming effect’, and the priming effect is most pronounced at low soil N availability. Hence, we hypothesized that priming of SOC decomposition in response to labile C addition would increase in soil exposed to long-term elevated CO2 exposure. Further, we hypothesized that long-term warming would enhance SOC priming rates, whereas drought would decrease the priming response. We incubated soil from a long-term, full-factorial climate change field experiment, with the factors elevated atmospheric CO2 concentration, warming and prolonged summer drought with either labile C (sucrose) or water to assess the impact of labile C on SOC dynamics. We used sucrose with a 13C/12C signature that is distinct from that of the native SOC, which allowed us to assess the contribution of these two C sources to the CO2 evolved. Sucrose induced priming of SOC, and the priming response was higher in soil exposed to long-term elevated CO2 treatment. Drought tended to decrease the priming response, whereas long-term warming did not affect the level of priming significantly. We were also able to assess whether SOC-derived primed C in elevated CO2 soil was assimilated before or after the initiation of the CO2 treatment 8 years prior to sampling, because CO2 concentrations were raised by fumigating the experimental plots with pure CO2 that was 13C-depleted compared to ambient CO2. Surprisingly, we conclude that sucrose addition primed decomposition of relatively old SOC fractions, i.e. SOC assimilated more than 8 years before sampling

    Reviews and syntheses: Soil responses to manipulated precipitation changes – an assessment of meta-analyses

    Get PDF
    In the face of ongoing and projected climatic changes, precipitation manipulation experiments (PMEs) have produced a wealth of data about the effects of precipitation changes on soils. In response, researchers have undertaken a number of synthetic efforts. Several meta-analyses have been conducted, each revealing new aspects of soil responses to precipitation changes. Here, we conducted a comparative analysis of the findings of 16 meta-analyses focused on the effects of precipitation changes on 42 soil response variables, covering a wide range of soil processes. We examine responses of individual variables as well as more integrative responses of carbon and nitrogen cycles. We find strong agreement among meta-analyses that belowground carbon and nitrogen cycling accelerate under increased precipitation and slow under decreased precipitation, while bacterial and fungal communities are relatively resistant to decreased precipitation. Much attention has been paid to fluxes and pools in carbon, nitrogen, and phosphorus cycles, such as gas emissions, soil carbon, soil phosphorus, extractable nitrogen ions, and biomass. The rates of processes underlying these variables (e.g., mineralization, fixation, and (de)nitrification) are less frequently covered in meta-analytic studies, with the major exception of respiration rates. Shifting scientific attention to these less broadly evaluated processes would deepen the current understanding of the effects of precipitation changes on soil and provide new insights. By jointly evaluating meta-analyses focused on a wide range of variables, we provide here a holistic view of soil responses to changes in precipitation

    Accumulation of soil carbon under elevated CO2 unaffected by warming and drought

    Get PDF
    Elevated atmospheric CO2 concentration (eCO2) and climate change may substantially alter soil carbon (C) dynamics and thus feedback to future climate. However, only very few field experiments world‐wide have combined eCO2 with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2, warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C m−2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m−2 y−1), and showed no sign of slowed accumulation over time. However, if observed pre‐treatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m−2 y−1. Further, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long‐term measurements of changes in soil C in response to the three major climate change‐related global changes, eCO2, warming, and changes in precipitation patterns, are therefore urgently needed
    • 

    corecore