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Abstract:  

Elevated atmospheric CO2 concentration (eCO2) and climate change may substantially alter 

soil carbon (C) dynamics and thus feedback to future climate. However, only very few field 

experiments world-wide have combined eCO2 with both warming and changes in 

precipitation in order to study the potential combined effects of changes in these fundamental 

drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2, 

warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks 

were on average 0.927 kg C m-2 higher across all treatment combinations with eCO2 

compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m-2 y-1), and 

showed no sign of slowed accumulation over time. However, if observed pre-treatment 

differences in soil C are taken into account, the annual rate of increase caused by eCO2 may 

be as high as 0.177 ± 0.070 kg C m-2 y-1. Further, the response to eCO2 was not affected by 

simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 

observed here, even when combined with other climate change factors, suggests that there is 

continued and strong potential for enhanced soil carbon sequestration in some ecosystems to 

mitigate increasing atmospheric CO2 concentrations under future climate conditions. The 

feedback between land C and climate remains one of the largest sources of uncertainty in 

future climate projections, yet experimental data under simulated future climate, and 

especially including combined changes, are still scarce. Globally coordinated and distributed 

experiments with long-term measurements of changes in soil C in response to the three major 

climate change-related global changes, eCO2, warming, and changes in precipitation patterns, 

are therefore urgently needed. 
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Introduction 

Soils contain the largest terrestrial carbon (C) pool (Jobbagy & Jackson, 2000) and 

changes in soil C stocks have the potential to serve as a strong positive or negative feedback 

to elevated CO2 (eCO2) and thus to future climate change (Davidson & Janssens, 2006). How 

elevated atmospheric CO2 and associated changes in climate will affect soil C depends on the 

balance between their effects on the rates of C accumulation through plant inputs and losses 

due to microbial decomposition of soil organic matter (Pendall et al., 2004). In order to 

accurately predict future changes in climate and their impacts on terrestrial ecosystems, it is 

critical to understand the role that soil C pools will play in the global C cycle under eCO2 and 

changing climatic conditions. 

 The net effect of increasing atmospheric CO2 concentrations on soil C stocks is still 

unclear. Elevated CO2 can stimulate plant biomass production directly by increasing the 

availability of CO2 for photosynthetic uptake or indirectly by improving plant water use 

efficiency (Ainsworth & Rogers, 2007). There is growing evidence that a substantial fraction 

of the additional biomass produced by plants will be allocated belowground to access 

nutrients necessary for increased plant growth, resulting in additional inputs to soil C pools 

(Dieleman et al., 2012). However, these additional inputs of labile organic C under eCO2 may 

result in priming, i.e. additional loss of soil organic carbon (SOC) caused by the stimulation 

of microbial activity in response to the addition of easily decomposable organic substrates 

(Kuzyakov, Friedel, & Stahr, 2000).  

Further, the climate change-associated increase in temperature and concurrent 

changes in precipitation may modulate the effects of elevated CO2 on ecosystem processes. 

Plant growth and microbial activity are often stimulated by climatic warming (Wu, Dijkstra, 

Koch, Peñuelas, & Hungate, 2011), resulting in additional uncertainty regarding the direction 

of a soil C feedback under warmer conditions (Crowther et al., 2016; Kirschbaum, 2000; Van 

Gestel et al., 2018). By contrast, lower soil moisture under drought conditions is expected to 
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decrease microbial activity and plant growth (Wu et al., 2011). As the effects of climate 

drivers such as elevated CO2, warming, and summer drought are rarely additive (Dieleman et 

al., 2012; Larsen et al., 2011), investigating their interactions is crucial to understanding the 

potential feedbacks between SOC and future atmospheric CO2 concentrations. 

Interactions between climate change drivers are currently not well incorporated into 

coupled carbon-climate models, which are often parameterized based on responses to single 

factor experiments that are the source of most data on the impacts of changing climatic 

conditions (Dieleman et al., 2012). As feedbacks between land C and climate are one of the 

largest sources of uncertainty in future climate projections (Arora et al., 2013; Todd-Brown et 

al., 2014), direct measurements of changes in soil C stocks in response to multi-factor studies 

are needed (Bradford et al., 2016). Yet, only few studies have investigated the combined 

impacts of multiple interacting global change drivers on soil C (Ni et al., 2017; Yue et al., 

2017). In fact, soil C stocks have often been neglected in experimental investigations of the 

effects of climate change as sampling is both expensive and time consuming (Ni et al., 2017). 

When soil C was measured, the study length was often too short to detect significant changes 

(Jastrow et al., 2005). The current lack of empirical observations of interactive effects from 

long-term climate experiments on soil C limits our ability to parameterize and validate the 

soil C component of Earth System Models (Bradford et al., 2016; Crowther et al., 2016).  

The CLIMAITE experiment was designed to examine the effects of climate change on 

a mixed heath and grassland ecosystem using a unique, multi-factor approach that allowed for 

the determination of the effects of eCO2, warming (T), and drought (D), both individually and 

in all possible combinations (Mikkelsen et al., 2008). Previous results from the experiment 

have shown significant differences between the effects of single vs. combined factor 

manipulations on root growth (Arndal et al., 2013; Arndal, Schmidt, Kongstad, Beier, & 

Michelsen, 2014; Arndal, Tolver, Larsen, Beier, & Schmidt, 2018), aboveground biomass 
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production (Kongstad et al., 2012), photosynthetic activity (Albert, Ro-Poulsen, et al., 2011b; 

Albert, Mikkelsen, Michelsen, Ro-Poulsen, & van der Linden, 2011), C and nitrogen (N) 

cycling (Larsen et al., 2011; Thaysen, Reinsch, Larsen, & Ambus, 2017), microbial 

abundance and growth (Andresen, Michelsen, Ambus, & Beier, 2010; Haugwitz et al., 2014), 

and soil respiration (Selsted et al., 2012). In most cases, treatment combinations have 

dampened rather than enhanced single-factor responses, and simple additive responses were 

rare (Larsen et al., 2011). 

Here, we used long-term soil C data from the unique experimental setup of this multi-

factorial experiment to investigate the effects of elevated atmospheric CO2, warming and 

extended drought on soil C stocks to a depth of 30 cm over an experimental period of 8 years. 

We focused particularly on determining the effect of eCO2 on soil C stocks and how its effect 

may be altered by simultaneous changes in temperature (warming) or soil water (drought).  

 

Materials and Methods 

Site Description 

This research was conducted at the CLIMAITE experimental site at Brandbjerg, 

located approximately 50 km NW of Copenhagen, Denmark (55°53’ N, 11°58’ E). The site is 

a dry heath/grassland ecosystem dominated by two perennial species, a grass (Deschampsia 

flexuosa (L.), c. 70% cover) and an evergreen dwarf shrub (Calluna vulgaris (L.), c. 30% 

cover). The experimental plots are situated on a sandy moraine from the Weichsel glaciation. 

Soils at the site are Cambic Arenosols with relatively low cation exchange capacity, weak 

signs of podsolization, and a pHCaCl2 in the topsoil of 3.3 increasing to 4.5 in the B-horizon. 

These well-drained soils are 71.5% sand, 20.5% coarse sand, 5.8% silt and 2.2% clay 

(Nielsen, Andresen, Michelsen, Schmidt, & Kongstad, 2009). The well-defined O-horizon 

above the mineral soil is approximately 2-5 cm thick. The site receives on average 613 mm of 
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rainfall annually, and the mean annual air temperature is 8 °C (Danish Meteorological 

Institute, 2009, http://www.dmi.dk). Bulk atmospheric N deposition at the site is relatively 

low (Larsen et al., 2011); in 2007 the site received 1.35 ± 0.04 g N m-2 y-1. 

The Danish Meteorological Institute has predicted that in the future, Denmark will 

experience warmer air temperatures and more frequent drought events in the summer in 

response to globally elevated atmospheric CO2 (Danish Meteorological Institute, 2009, 

http://www.dmi.dk). The experimental treatments implemented at this site were designed to 

mimic these predicted climatic changes. The implementation of the eCO2 and warming 

treatments began in October 2005, and the first prolonged summer drought was imposed in 

July 2006. Free air CO2 enrichment (FACE) was used to increase atmospheric CO2 

concentrations in the eCO2 treatment plots to a target value of 510 ppm. The FACE 

treatments were employed from dawn until dusk and switched off overnight and during 

periods of complete snow cover. 

Passive nighttime warming was achieved by the use of curtains that reflected infrared 

radiation back to the soil surface and vegetation. These were employed from dusk until dawn 

throughout the year, but removed during periods of rain, high winds, and severe frost. The 

warming treatments increased nighttime air temperatures by 0.6°C and 1.3°C in the summer 

and winter months, respectively. Nighttime soil temperatures at a depth of 5 cm were 

increased by 0.7°C in the summer and 0.3°C in the winter. Averaged across night and 

daytime measurements, the warming treatments increased soil temperatures by 0.4°C in the 

summer and 0.2°C in the winter. The warming treatment also had the effect of increasing the 

growing season by two weeks in the spring (Kongstad et al., 2012) and reducing soil moisture 

relative to the control. 
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Droughts were induced once or twice a year in the spring or summer by use of rainfall 

exclusion curtains during rain events, removing on average 59±6 mm of rainfall per year (8% 

of annual precipitation). Drought periods continued until the soil water content fell below 5% 

in the upper 20 cm of the soil profile as determined by TDR probes, at which point re-wetting 

was allowed in order to maintain soil moisture slightly above the wilting point of vegetation 

at the site. Drought periods typically lasted between 1-5 weeks, which is within the range of 

naturally occurring summer droughts at the site. Mean annual soil moisture was significantly 

reduced by the drought treatment over the course of the experiment. However, because re-

wetting was allowed, the significant drying effect observed when the treatment was applied 

was not always persistent throughout the growing season (Selsted et al., 2012). 

 

Experimental Design 

Treatments at the site consisted of a full factorial combination of eCO2, warming and summer 

drought (Figure S1). Six blocks contained pairwise combinations of 12 octagons. In each 

block one octagon received eCO2 (CO2), whereas the other did not. Each octagon was 6.8 m 

in diameter and divided into four subplots: control, warming (T), summer drought (D), and 

combined warming and drought (TD). There were six replicates of each of the three 

individual treatments (T, D, CO2), their combinations (TD, TCO2, DCO2, TDCO2), and a 

non-treated control (A) resulting in a total of 48 treatment plots. The full factorial treatment 

(TDCO2) simulates the predicted future climatic conditions at the site. A full description of 

the experimental setup can be found in Mikkelsen et al. (2008). 
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Sampling and Analyses 

Soil samples were collected three times over the course of 8 years from the upper 30 

cm of the soil profile. Samples were taken in all experimental plots, for a total of 48 samples 

per depth interval. As these samples were collected for a variety of experimental purposes, 

soil-sampling intervals varied. A full description of the sampling depth intervals and 

sampling dates can be found in Table S1. 

In July 2007, soil samples were taken during the installation of minirhizotrons 

(Arndal et al., 2018). These samples were taken by augering at a 45° angle. Fourteen samples 

were lost from this dataset in the 0-5 cm depth interval, but these missing samples were fairly 

evenly distributed across treatments. One entire warmed profile was removed from the July 

2007 data since plant material was suspected to have contaminated the samples from this plot 

during the sampling process. In November 2011 soil cores were taken as part of a 13C 

labeling experiment, and in June 2013, soil samples were taken using a soil column cylinder 

auger (Eijkelkamp Agrisearch Equipment BV, Giesbeek, The Netherlands) with an inner 

diameter of 87 mm attached to a gasoline powered percussion hammer (Cobra Combi, Atlas 

Copco AB, Nacka, Sweden). 

All samples were sieved to 2 mm and visible roots passing the sieve were removed 

before drying and grinding. Samples were oven dried at 55° C and homogenized by ball-

milling. C concentrations of the samples from 2007 and 2013 were determined using an EA 

Flash 2000 elemental analyzer (Thermo Fisher Scientific) and the samples from 2011 were 

analyzed using a Eurovector CN elemental analyzer. 

Bulk density values for each sampling interval at each time point were interpolated 

and, when necessary, extrapolated from bulk density measurements taken at the last sampling 

point in 2013 and pre-treatment measurements of bulk density conducted in 2004 to account 

for the decrease in bulk density over the course of the experiment, particularly in the plots 
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exposed to eCO2 (Supplementary Methods, Figure S2). This allowed for the calculation of 

soil C stocks to 30 cm depth on an areal basis. Missing data points from the upper 0-5 cm 

interval of Month 22 were point filled for pool calculation by averaging across the other plots 

from that treatment combination. 

 

Statistical Analyses 

Linear mixed effects models (“lme” in the “nlme” package in R Version 3.2.3) were 

used to test for climate treatment effects on soil C stocks to 30 cm over time (Table S3) 

(Pinheiro & Bates, 2000). Time and main factors, eCO2, T, and D, were included in the 

model as fixed effects in a full-factorial statement. Pretreatment soil C stocks for each 

octagon were included in the model as a covariate. A random intercept term, with Plot nested 

within Block, was used to account for the experimental design and repeated measures. Time 

was represented by the number of months passed since the implementation of the treatments 

(Table S1), and was included as a continuous variable. 

Differences of least square means (“lsmeans” in R) were used to interpret significant 

interactions (α = 0.05) (Tables S2.1, S2.2) and to compute the slope of significant changes 

over time (Table S2.3). Results are presented as mean C stocks ± standard error of the mean 

(SEM).  

A linear mixed effects model was used to test differences in the C:N ratio of C and N 

stocks in both the entire 30 cm profile and the top 10 cm individually. This model included 

the main factors, eCO2, T and D, as fixed effects in a full-factorial statement and block as a 

random factor. 
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Results 

Soil C stocks increased under eCO2 over time (p = 0.001, Table S2.2) but remained 

unchanged under ambient CO2, causing a significant interaction between eCO2 and time 

(eCO2 x time, p = 0.013, Figure 1a, Table S2). Though there was no significant eCO2 effect 

after two years of experimental treatments, soil C was significantly increased by eCO2 at both 

of the following measurement points (p = 0.001, Figures 1a & 2, Table S2.1). The response 

was consistent across all treatments combinations with elevated CO2 (Figure 2b). After 8 

years of treatments, eCO2 had increased soil C stocks on average from 4.94 ± 0.14 kg C m-2 

under ambient CO2 (n=24) to 5.87 ± 0.31 kg C m-2 in all treatment combinations with eCO2 

(n=24), equal to a mean annual increase of 0.120 ± 0.043 kg C m-2 yr-1. However, pre-

treatment data showed that the eCO2 plots initially contained substantially less C (3.91 ± 0.19 

kg C m-2) than the ambient plots (5.06 ± 0.24 kg C m-2). When this pretreatment difference is 

taken into account by computing the annual increment from the difference in the slopes of the 

two CO2 treatments over time (Table S2.3), the mean annual C accumulation rate was as high 

as 0.177 ± 0.070 kg C m-2 y-1 under eCO2. 

Drought significantly increased soil C stocks (p = 0.002, Table S2) as a main effect 

(Figure 1b), whereas warming had no effect on soil C stocks (Figure 1c). There were no 

significant interactions between any of the three main factors.   

The C:N ratio of the soil profile (0-30 cm) was unaffected by eCO2. However, there 

was a significant increase in C:N from 17.2 ± 0.3 under ambient CO2 to 18.2 ± 0.3 with eCO2 

in the top 10 cm of the profile (p = 0.039). 

 

Discussion 

Elevated CO2 had a positive effect on soil C stocks in the studied temperate heath-

grassland, and this response was unaffected by drought and warming. Drought, which has 
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previously been shown to reduce soil respiration rates at the site (Selsted et al., 2012), 

appeared to increase soil C stocks. However, any potential increase in soil C resulting from a 

reduction in decomposition was likely compensated for by the concomitant negative effects 

of drought on plant photosynthesis (Albert, Ro-Poulsen, et al., 2011b), aboveground biomass 

(Kongstad et al., 2012), and root growth (Arndal et al., 2014), resulting in reduced inputs to 

the soil C pool. In light of the fact that the observed increase in soil C with drought was 

consistent throughout the experiment, we therefore believe this difference to be due to 

random pretreatment differences in soil C caused by initial differences in plant community 

composition and associated differences in litter input and quality. As higher levels of soil 

organic matter are found under the dwarf shrub (Calluna vulgaris) than under the dominant 

grass species (Deschampsia flexuosa) at the site (Nielsen et al., 2009), the fact that shrubs 

happened to be more prevalent in the drought plots compared to the non-drought plots at the 

beginning of the experiment (Table S3) likely resulted in larger initial SOC pools. Many 

other studies have found drought to have no effect on soil C (Yue et al., 2017), though others 

have observed small yet significant increases with drought (Zhou et al., 2016). Regardless, 

the 15.6% increase in soil C with drought at our site observed after less than 2 years is many 

times greater than the 1.45% mean increase found by Zhou et al.’s (2016) meta-analysis, 

suggesting that such an increase was likely not a treatment, but likely a pre-treatment effect. 

Warming did not change the soil C stock during our experiment, which was surprising 

as warming has previously been shown to stimulate microbial abundance and growth at the 

site (Haugwitz et al., 2014) and also to induce a small, yet consistent increase in soil 

respiration (Selsted et al., 2012). Additionally, standing root biomass was observed to be 

lower in the warmed plots that did not receive eCO2 (Arndal et al., 2014, 2018), which may 

be a response to more easily accessible N resulting from increased turnover under higher 

temperatures (Larsen et al., 2011). However, as the warming treatment also lengthened the 
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growing season (Albert, Ro-Poulsen, et al., 2011a), it may be that the potential for plant 

growth over a longer period of time has compensated for the increased C loss caused by the 

higher microbial activity. Warming has similarly been found to have no net effect on soil C 

stocks in some meta-analyses (Dieleman et al., 2012; Ni et al., 2017; Van Gestel et al., 2018), 

whereas other meta-analyses have predicted soil C stocks across the globe to decrease with 

increasing temperatures (Crowther et al., 2016; Yue et al., 2017).   

Elevated atmospheric CO2 concentration was the only treatment that changed the soil 

C stock over time in our experiment. CO2 fertilization of plant growth, especially 

belowground (Arndal et al., 2013), may be the primary cause of the observed increase in soil 

C under eCO2. Previous results from the experiment have shown that eCO2 increased 

photosynthetic activity in both dominant plant species (Albert, Ro-Poulsen, et al., 2011b; 

Albert, Mikkelsen, et al., 2011) and resulted in seasonal increases in aboveground biomass 

production (Kongstad et al., 2012). Most notably, belowground biomass production increased 

in response to the greater demand for nutrients to accommodate increased aboveground plant 

growth (Arndal et al., 2013). The eCO2 treatment induced the greatest increase in root growth 

(Arndal et al., 2014, 2018), particularly in the deeper soil horizons (30-70 cm), where eCO2 

increased root biomass by 57% (Arndal et al., 2018). The increase in belowground C inputs 

therefore outweighed losses due to increased soil respiration (+38%) under eCO2 (Selsted et 

al., 2012). Pretreatment measurements also indicated that soil C stocks in the eCO2 plots were 

initially 23% lower than in the ambient CO2 plots, presumably due to the higher prevalence 

of Calluna in the ambient plots (Kongstad et al., 2012). These pretreatment differences 

suggest that the effect of eCO2 on soil C may have been even larger than measured at the end 

of the experiment as the increase with eCO2 also had to compensate for the initially lower soil 

C stocks. 
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The field-scale application of eCO2 to a variety of ecosystem types, including forests 

(Drake et al., 2011; Hofmockel, Zak, Moran, & Jastrow, 2011), grasslands (Dijkstra, Hobbie, 

Reich, & Knops, 2005; Reid, Adair, Hobbie, & Reich, 2012), and agro-ecosystems 

(Dorodnikov, Kuzyakov, Fangmeier, & Wiesenberg, 2011), has rarely been shown to impact 

soil C. In contrast to a few studies that observed a reduction in soil C due to a priming effect 

under eCO2 (Butterly et al., 2016; Carney, Hungate, Drake, & Megonigal, 2007), meta-

analyses have shown that overall eCO2 increases soil C stocks (De Graaff, van Groenigen, 

Six, Hungate, & van Kessel, 2006; Hungate et al., 2009; Jastrow et al., 2005; Luo, Hui, & 

Zhang, 2006; van Groenigen et al., 2006; Yue et al., 2017). However, these studies did not 

examine combinations of eCO2 with other climate variables that will change simultaneously 

with elevated CO2 in the future. Only recently has enough data from multi-factor studies 

become available for drought or warming to be included as additional factors in meta-

analyses of effects of eCO2 on soil C, though the number of these combined experiments is 

still very low (6 studies included warming; 3 included drought), and three-factor studies are 

still lacking (Yue et al., 2017). Our study is the first field trial to confirm with long-term 

observational data that the increase in soil C under eCO2 persists even in combination with 

both drought and warming, thus validating many current Earth System Models that project 

increased C storage over the 21st century (Todd-Brown et al., 2014). 

The fact that a response to eCO2 was not detected in most other experiments may be 

in part due to the experimental design. Despite the fact that the effects of eCO2 can vary over 

time (Bradford et al., 2008; Luo et al., 2004), the majority of studies report only a single 

measurement point at the end of the experiment when examining differences in soil C under 

these treatments. Additionally, the strong interannual variability of rapidly cycling C pools 

may skew results when single measurements are used (Pendall, Osanai, Williams, & 

Hovenden, 2011). Finally, it may take years before treatment effects are large enough to 
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become detectable against relatively large and inherently variable pre-existing soil C pools 

(Jastrow et al., 2005). Results are therefore highly dependent on the duration of the 

experiment, which on average among eCO2 experiment is less than 4 years (Andresen et al., 

2016; De Graaff et al., 2006; van Groenigen et al., 2006). Longer study periods, as in our 

case, are necessary to account for the effects on soil C pools with slower turnover rates, 

which may result in more permanent shifts in SOC. The few studies that did use multiple 

measurements similarly observed that the magnitude of the effect of eCO2 on soil C increased 

over time (Hoosbeek, Li, & Scarascia-Mugnozza, 2006; Jastrow et al., 2005; Ross, Newton, 

Tate, & Luo, 2013).  

However, the magnitude of increase in soil C stocks in the eCO2 plots in our 

experiment was greater than that in other studies that also observed a significant SOC gain 

with eCO2. The higher of our two estimates of the annual C accumulation rate under eCO2 

(0.177 ± 0.070 kg C m-2 yr-1), which accounts for the pretreatment differences in soil carbon 

pools, may partly be the product of initial differences in the plant community composition. It 

is possible that lower starting point in terms of Calluna biomass in the eCO2 plots may have 

allowed for an overall faster growth rate relative to the ambient plots. This rate may therefore 

overestimate the potential response to eCO2 at our experimental site. Yet, even the lower 

estimate based on the difference between C pools under ambient vs. elevated CO2 at the final 

sampling point (0.120 ± 0.043 kg C m-2 y-1) is still substantially higher than the 0.079 and 

0.059 kg C m-2 yr-1 increases observed with eCO2 in a sweetgum plantation in eastern 

Tennessee (Iversen, Keller, Garten, Charles, & Norby, 2012) and a Kansas grassland (Jastrow 

et al., 2005), respectively.  

While there is evidence that the impact of eCO2 on soil C stocks is greater when high 

N availability is maintained, as in fertilized agricultural systems (De Graaff et al., 2006; 

Hungate et al., 2009; Jastrow et al., 2005; Luo et al., 2006; van Groenigen et al., 2006; Yue et 
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al., 2017), progressive N limitation is likely to restrict the potential for continued stimulation 

of plant inputs with eCO2 in natural ecosystems (Luo et al., 2004). The strong response of soil 

C to eCO2 in our study may be partly facilitated by the association between Calluna vulgaris 

and ericoid mycorrhizal fungi, as the fungal symbiont is able to scavenge organic N and 

thereby may help to reduce potential N limitation of growth (Orwin, Kirschbaum, St John, & 

Dickie, 2011). Furthermore, it appears that N limitation has thus far been avoided by an 

increase in the C:N ratio of leaves (Albert, Ro-Poulsen, et al., 2011b), roots (Arndal et al., 

2014), and soil organic matter, along with additional exploitation of N pools in deeper soil 

horizons. The increase in root biomass, particularly in deep horizons below 30 cm depth 

(Arndal et al., 2014, 2018), likely allowed for the upward transportation of N from deeper 

soil layers to meet increased plant nitrogen requirements under eCO2. Nonetheless, in the 

future, progressive N limitation may eventually limit plant growth and thus soil C 

accumulation under eCO2 as deeper N pools are depleted. However, additional growth of the 

soil C pool seems likely as the rate of accumulation of soil C showed no sign of slowing over 

the course of 8 years of experimental treatment.  

Changes in soil C pools have the potential to either exacerbate or alleviate rising 

atmospheric CO2 concentrations and the resulting detrimental changes in climate. Over the 8 

years of our study, we observed that the increase in soil C due to the stimulating effect of 

eCO2 on belowground plant growth was not diminished by either drought or warming, 

signifying that eCO2 had a stronger effect on soil C than either of these climatic variables. 

Though previous research has indicated that soil C is likely to increase under eCO2, the fact 

that neither warming nor drought – or their combination – significantly modified the effect of 

eCO2 on soil C stocks is an observation that is unique to our study. Given the lack of 

significant interactions between treatments, our results suggest that moderate changes in 

warming and drought are unlikely to modify the rate of increase in soil C stocks under eCO2. 
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This site is therefore expected to store more C under future climate conditions, serving as a 

negative feedback to elevated atmospheric CO2 concentrations.  

Our findings also suggest that failing to account for the effects of eCO2 may 

invalidate climate model parameters based on studies of warming or other climate change 

drivers alone. For example, Crowther et al. (2016) extrapolated global soil C stock changes 

from a range of warming experiments, including ours, and projected substantial losses of soil 

C in the future in response to higher temperatures. However, the large increase in soil C 

stocks with eCO2 observed in our study, including in the plots with warming, indicates that 

eCO2 may potentially counterbalance any losses that could theoretically occur with warming 

alone. As warming in the absence of eCO2 is not a realistic future climate scenario, our 

results highlight the importance of including eCO2 in combination with climate drivers in 

future climate experiments.  
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Figure Captions 

Figure 1: Mean soil C stocks averaged across all treatment combinations with (n = 24) and 
without (n = 24) elevated CO2 (a), extended summer drought (b), and warming (c) treatments 
(i.e. main factor effects). Error bars indicate 1 SEM. Significant main factor effects (p < 0.05) 
are indicated by an asterisk at that time point.  
 
Figure 2: Mean soil C stocks for each of the 8 individual treatments (n = 6) under ambient 
CO2 (a) and elevated CO2 (b). Error bars indicate 1 SEM. Treatments: Ambient control (A), 
drought (D), warming (T), warming + drought (TD), elevated CO2 (CO2), drought + elevated 
CO2 (DCO2), warming + elevated CO2 (TCO2), and warming + drought + elevated CO2 
(TDCO2).  
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