45 research outputs found

    A critical look at the role of the bare parameters in the renormalization of Phi-derivable approximations

    Get PDF
    We revisit the renormalization of Phi-derivable approximations from a slightly different point of view than the one which is usually followed in previous works. We pay particular attention to the question of the existence of a solution to the self-consistent equation that defines the two-point function in the Cornwall-Jackiw-Tomboulis formalism and to the fact that some of the ultraviolet divergences which appear if one formally expands the solution in powers of the bare coupling do not always appear as divergences at the level of the solution itself. We discuss these issues using a particular truncation of the Phi functional, namely the simplest truncation which brings non-trivial momentum and field dependence to the two-point function.Comment: 30 pages, 12 figure

    Deconfinement transition in SU(N) theories from perturbation theory

    Full text link
    We consider a simple massive extension of the Landau-DeWitt gauge for SU(NN) Yang-Mills theory. We compute the corresponding one-loop effective potential for a temporal background gluon field at finite temperature. At this order the background field is simply related to the Polyakov loop, the order parameter of the deconfinement transition. Our perturbative calculation correctly describes a quark confining phase at low temperature and a phase transition of second order for N=2N=2 and weakly first order for N=3N=3. Our estimates for the transition temperatures are in qualitative agreement with values from lattice simulations or from other continuum approaches. Finally, we discuss the effective gluon mass parameter in relation to the Gribov ambiguities of the Landau-DeWitt gauge.Comment: 10 pages, 3 figure

    Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond

    Full text link
    We study the confinement-deconfinement phase transition of pure Yang-Mills theories at finite temperature using a simple massive extension of standard background field methods. We generalize our recent next-to-leading-order perturbative calculation of the Polyakov loop and of the related background field effective potential for the SU(2) theory to any compact and connex Lie group with a simple Lie algebra. We discuss in detail the SU(3) theory, where the two-loop corrections yield improved values for the first-order transition temperature as compared to the one-loop result. We also show that certain one-loop artifacts of thermodynamical observables disappear at two-loop order, as was already the case for the SU(2) theory. In particular, the entropy and the pressure are positive for all temperatures. Finally, we discuss the groups SU(4) and Sp(2) which shed interesting light, respectively, on the relation between the (de)confinement of static matter sources in the various representations of the gauge group and on the use of the background field itself as an order parameter for confinement. In both cases, we obtain first-order transitions, in agreement with lattice simulations and other continuum approaches.Comment: 35 pages, 20 figure

    Yang-Mills correlators at finite temperature: A perturbative perspective

    Full text link
    We consider the two-point correlators of Yang-Mills theories at finite temperature in the Landau gauge. We employ a model for the corresponding Yang-Mills correlators based on the inclusion of an effective mass term for gluons. The latter is expected to have its origin in the existence of Gribov copies. One-loop calculations at zero temperature have been shown to agree remarkably well with the corresponding lattice data. We extend on this and perform a one-loop calculation of the Matsubara gluon and ghost two-point correlators at finite temperature. We show that, as in the vacuum, an effective gluon mass accurately captures the dominant infrared physics for the magnetic gluon and ghost propagators. It also reproduces the gross qualitative features of the electric gluon propagator. In particular, we find a slight nonmonotonous behavior of the Debye mass as a function of temperature, however not as pronounced as in existing lattice results. A more quantitative description of the electric sector near the deconfinement phase transition certainly requires another physical ingredient sensitive to the order parameter of the transition.Comment: 16 pages, 12 figures ; Published version (PRD

    Yang-Mills correlators across the deconfinement phase transition

    Full text link
    We compute the finite temperature ghost and gluon propagators of Yang-Mills theory in the Landau-DeWitt gauge. The background field that enters the definition of the latter is intimately related with the (gauge-invariant) Polyakov loop and serves as an equivalent order parameter for the deconfinement transition. We use an effective gauge-fixed description where the nonperturbative infrared dynamics of the theory is parametrized by a gluon mass which, as argued elsewhere, may originate from the Gribov ambiguity. In this scheme, one can perform consistent perturbative calculations down to infrared momenta, which have been shown to correctly describe the phase diagram of Yang-Mills theories in four dimensions as well as the zero-temperature correlators computed in lattice simulations. In this article, we provide the one-loop expressions of the finite temperature Landau-DeWitt ghost and gluon propagators for a large class of gauge groups and present explicit results for the SU(2) case. These are substantially different from those previously obtained in the Landau gauge, which corresponds to a vanishing background field. The nonanalyticity of the order parameter across the transition is directly imprinted onto the propagators in the various color modes. In the SU(2) case, this leads, for instance, to a cusp in the electric and magnetic gluon susceptibilities as well as similar signatures in the ghost sector. We mention the possibility that such distinctive features of the transition could be measured in lattice simulations in the background field gauge studied here.Comment: 28 pages, 17 figures; published versio

    Two-particle irreducible effective action approach to nonlinear current conserving approximations in driven systems

    Full text link
    Using closed-time path two-particle irreducible coarse-grained effective action (CTP 2PI CGEA) techniques, we study the response of an open interacting electronic system to time-dependent external electromagnetic fields. We show that the CTP 2PI CGEA is invariant under a simultaneous gauge transformation of the external field and the full Schwinger-Keldysh propagator, and that this property holds even when the loop expansion of the CTP 2PI CGEA is truncated at arbitrary order. The effective action approach provides a systematic way of calculating the propagator and response functions of the system, via the Schwinger-Dyson equation and the Bethe-Salpeter equations, respectively. We show that, due to the invariance of the CTP 2PI CGEA under external gauge transformations, the response functions calculated from it satisfy the Ward-Takahashi hierarchy, thus warranting the conservation of the electronic current beyond the expectation value level. We also clarify the connection between nonlinear response theory and the WT hierarchy, and discuss an example of an ad hoc approximation that violate it. These findings may be useful in the study of current fluctuations in correlated electronic pumping devices.Comment: 30 pages. Accepted for publication in JPC

    Estudio experimental y numérico de uniones con angulares ejecutadas con perfiles europeos

    Get PDF
    In this paper, four specimens with different thickness of top and seat angle with double web angle connections are experimentally tested and numerically modeled. The model has been solved by means of Abaqus® finite element package. Moment rotation curves obtained from the experiments are compared with those obtained from FE models and good agreement is observed. These results validate this numerical modeling in order to use it in future studies on angle connections.En este artículo se presenta el ensayo experimental y el modelo numérico de cuatro uniones de estructura metálica realizadas con casquillos angulares de diferentes espesores. El problema se ha resuelto mediante el programa comercial de elementos finitos Abaqus®. Las curvas experimentales momento-rotación obtenidas concuerdan razonablemente con los resultados de los modelos propuestos, de modo que con este trabajo se ha establecido una base numérica sólida para estudios posteriores

    Equilibration in phi^4 theory in 3+1 dimensions

    Full text link
    The process of equilibration in phi^4 theory is investigated for a homogeneous system in 3+1 dimensions and a variety of out-of-equilibrium initial conditions, both in the symmetric and broken phase, by means of the 2PI effective action. Two Phi-derivable approximations including scattering effects are used: the two-loop and the ``basketball'', the latter corresponding to the truncation of the 2PI effective action at O(lambda^2). The approach to equilibrium, as well as the kinetic and chemical equilibration is investigated.Comment: 32 pages, 14 figures, uses axodraw, minor corrections adde

    Experimental and numerical study of angle connections assembled with European profiles

    Get PDF
    In this paper, four specimens with different thickness of top and seat angle with double web angle connections are experimentally tested and numerically modeled. The model has been solved by means of Abaqus® finite element package. Moment rotation curves obtained from the experiments are compared with those obtained from FE models and good agreement is observed. These results validate this numerical modeling in order to use it in future studies on angle connections.<br><br>En este artículo se presenta el ensayo experimental y el modelo numérico de cuatro uniones de estructura metálica realizadas con casquillos angulares de diferentes espesores. El problema se ha resuelto mediante el programa comercial de elementos finitos Abaqus®. Las curvas experimentales momento-rotación obtenidas concuerdan razonablemente con los resultados de los modelos propuestos, de modo que con este trabajo se ha establecido una base numérica sólida para estudios posteriores

    Experiencia de introducción de un trabajo tutelado en 2º curso de una ingeniería

    Get PDF
    Colección: Contextos Universitarios Transformadores (CUT). Número 7[Resumen] Este artículo trata sobre la experiencia de introducción de un trabajo tutelado en la asignatura Resistencia de Materiales, caracterizada por ser una asignatura base de 2º curso de la mayoría de ingenierías, normalmente asociada a una matrícula numerosa y que siempre se había evaluado en base al examen final de la asignatura. Por requerimientos debidos a la modificación de las metodologías de evaluación de las titulaciones de Grado en Ingeniería Mecánica y Grado en Tecnologías Industriales, se decidió incluir un trabajo tutelado individual en la asignatura. Las ideas esenciales de partida eran dotarlo del peso necesario acorde con el porcentaje asociado en la evaluación y generar trabajos específicos para cada alumno. Se buscaba una propuesta en un formato adecuado para facilitar la corrección, habida cuenta de que había de entregarse en fechas muy próximas al periodo de evaluación. El proceso se desarrolló muy fácilmente, con una corrección relativamente ágil. La mayoría de los alumnos resolvieron satisfactoriamente, detectándose cierta precariedad a la hora de redactar las conclusiones y discutir los resultados obtenidos.[Abstract] This paper deals with the experience of introducing a supervised work in the subject Resistencia de Materiales, characterized by being a base subject of the 2nd year of most engineering, normally associated with a large enrollment and that had always been evaluated based on a final exam. Due to the modification of the evaluation methodologies of the Degree in Mechanical Engineering and Degree in Industrial Technologies, it was decided to include an individual supervised coursework in the subject. The essential starting ideas were to give it the necessary weight according to the percentage assigned in the evaluation and also to generate an specific work for each student. A proposal was sought in an appropriate format to facilitate the correction, given that it had to be delivered on dates very close to the evaluation period. The process went very smoothly, with relatively quick proofreading. Most of the students resolved satisfactorily, detecting a certain precariousness when writing the conclusions and discussing the results obtained.http://hdl.handle.net/2183/3249
    corecore