We consider the two-point correlators of Yang-Mills theories at finite
temperature in the Landau gauge. We employ a model for the corresponding
Yang-Mills correlators based on the inclusion of an effective mass term for
gluons. The latter is expected to have its origin in the existence of Gribov
copies. One-loop calculations at zero temperature have been shown to agree
remarkably well with the corresponding lattice data. We extend on this and
perform a one-loop calculation of the Matsubara gluon and ghost two-point
correlators at finite temperature. We show that, as in the vacuum, an effective
gluon mass accurately captures the dominant infrared physics for the magnetic
gluon and ghost propagators. It also reproduces the gross qualitative features
of the electric gluon propagator. In particular, we find a slight nonmonotonous
behavior of the Debye mass as a function of temperature, however not as
pronounced as in existing lattice results. A more quantitative description of
the electric sector near the deconfinement phase transition certainly requires
another physical ingredient sensitive to the order parameter of the transition.Comment: 16 pages, 12 figures ; Published version (PRD