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A critical look at the role of the bare parameters

in the renormalization of Φ-derivable approximations
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We revisit the renormalization of Φ-derivable approximations from a slightly different point of
view than the one which is usually followed in previous works. We pay particular attention to the
question of the existence of a solution to the self-consistent equation that defines the two-point
function in the Cornwall-Jackiw-Tomboulis formalism and to the fact that some of the ultraviolet
divergences which appear if one formally expands the solution in powers of the bare coupling do
not always appear as divergences at the level of the solution itself. We discuss these issues using a
particular truncation of the Φ functional, namely the simplest truncation which brings non-trivial
momentum and field dependence to the two-point function.
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I. INTRODUCTION

Developed in the context of non-relativistic many-body theory [1–3], the Φ-derivable approximation scheme was
later generalized to relativistic quantum field theories [4] where it is considered a promising tool to address some
of the currently open fundamental questions. This functional method relies on the two-particle irreducible (2PI)
effective action, which upon a diagrammatic expansion in 2PI skeleton graphs leads to a systematically improvable
approximation scheme of a given quantum field theory. Remarkably, the global symmetries of the classical action are
preserved at any order of the truncation and the solution of the self-consistent propagator equation obtained through
a variational principle satisfies thermodynamical consistency [2]. This feature makes the method particularly suitable
for the calculation of thermodynamical quantities, such as the entropy [5] or the pressure [6], which show a rather good
convergence behavior as the order of the approximation is increased. In an out-of-equilibrium setting, the success
of the 2PI evolution equations in describing the late-time dynamics of quantum fields from far-from-equilibrium
initial conditions [7] has opened the possibility to study a number of problems, such as preheating [8, 9], transport
coefficients [10] or topological defect formation [11, 12].

Together with the increasing number of applications of the 2PI effective action, new insight has been gained on
technical aspects regarding its renormalization [13–15]. Part of the difficulty in this context comes from the fact
that the two-point function is given in terms of a self-consistent and thus non-perturbative equation, also known as
the gap equation, which makes it difficult to identify and eliminate the ultraviolet (UV) divergences. Interestingly
however, part of the intuition that we have gained regarding the renormalization of Φ-derivable approximations
comes from perturbation theory. In fact, one can always consider a formal (partial [16] or complete [14]) perturbative
expansion of the solution of the gap equation which allows to unveil the structure of the corresponding UV
divergences. This structure can then be expressed in terms of certain non-perturbative objects fulfilling their own
self-consistent equations, in particular a four-point function obeying a Bethe-Salpeter-type equation [13, 14]. It
follows that the renormalization procedure for Φ-derivable approximations can be formulated solely in terms of
these non-perturbative objects, without any reference to the formal expansion used to identify the divergences,
and it is then readily applicable in practice. However, since the previous construction is based on a perturbative
expansion, the only rigorous statement that can be made a priori concerning the renormalization procedure is
that, if one would formally expand the solution of the gap equation in powers of the renormalized coupling, the
coefficients of such an expansion would converge as the ultraviolet cut-off Λ is taken to ∞. But what about the
solution of the gap equation itself, before it is formally expanded? Is the renormalization procedure we referred to
above sufficient to make the solution insensitive to the cut-off when the later becomes large? Numerical studies
seem to indicate that this is indeed the case [6, 21]. However, proving this fact rigorously is a difficult matter
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because the UV structure of the solution of the gap equation usually reveals itself after solving the equation and in
general this can be achieved only numerically. Although there exist certain analytic arguments which corroborate
these numerical observations [13, 14], they are all based on two important assumptions. First, that the solution of
the gap equation exists, if not for arbitrarily large, at least for sufficiently large Λ. Second, that the asymptotic
behavior of the solution is only mildly modified with respect to that in perturbation theory, that is up to some
powers of logarithms of the momentum. These two assumptions are again difficult to prove analytically and usually
one needs to rely on numerical evidence. A related question is how the divergences of the formal perturbative
expansion of the solution of the gap equation appear at the level of the solution itself. Since such divergences are
to be absorbed in a redefinition of the bare parameters, this question can also be stated as follows: what is the
actual role played by the bare parameters in the existence and the large-Λ behavior of the solution of the gap equation?

In this paper we put forward a slightly different point of view towards understanding the renormalization of Φ-
derivable approximations, which might shed some light on the issues mentioned above. Generalizing to a momentum
dependent self-energy our approach initiated in [17], we discuss the behavior of the solution of the gap equation
as the cut-off increases using a combination of numerical and semi-analytical methods, without ever relying on any
perturbative expansion. This approach also addresses the question of the existence of a solution of the gap equation
for arbitrary large values of Λ. Part of the originality of this work is that, in a sense, it revisits the question of
renormalization of Φ-derivable approximations from scratch: we shall recover known results, but from a different
perspective. In particular, we point out a difference between the role of the bare mass and that of the bare coupling:
if the bare mass is needed to absorb divergences of the solution of the gap equation, the role of the bare coupling is
somewhat different, at least in the approximation that we consider here. We concentrate on the simplest Φ-derivable
approximation of the one-component ϕ4 scalar field theory which introduces a non-trivial momentum dependence for
the two-point function. The corresponding self-energy M̄2(K) obeys the following gap equation:

M̄2(K) = m2
0 +

λ0

2
φ2 +

λ0

2

∫

|Q|<Λ

Ḡ(Q)− λ2
0

2
φ2

∫

|Q|<Λ
|Q−K|<Λ

Ḡ(Q)Ḡ(Q−K) , (1)

where m2
0 and λ0 denote the bare parameters and Ḡ(Q) ≡ 1/(Q2 + M̄2(Q)). In what follows, the two integrals ap-

pearing in Eq. (1) are named respectively the tadpole integral and the bubble integral. The function M̄2(K) is referred
to as the self-energy, although it includes the tree-level bare mass. It depends on the cut-off Λ and on the field φ, but
we shall leave these dependencies implicit. The same remark applies to the propagator Ḡ(Q). Finally, the regulariza-
tion that we have chosen1 is such that the norm of any momentum, including the external momentum K, is less than Λ.

It is usually said that the self-energy M̄2(K), solution of Eq. (1), diverges. What is meant by this is that if one would
let the cut-off Λ grow indefinitely, keeping the bare parameters fixed, the solution M̄2(K) of this bare gap equation

would diverge. Is this really so? Note that the reason why we believe that there should be divergences comes from our
experience with perturbation theory. More precisely, if we would formally expand the solution of Eq. (1) in powers of
λ0, the coefficients of this expansion would diverge as Λ → ∞, with divergences coming both from the tadpole and the
bubble integrals. But what about the solution M̄2(K), before it is expanded? Does it diverge? And do the possible
divergences originate from both integrals? In fact, it is not even clear that the solution exists for arbitrary large values
of Λ. So, how can we even start discussing divergences? We first investigate these questions in Sec. II, where we argue
that the solution of the bare gap equation exists indeed for arbitrarily large values of Λ and diverges. Surprisingly
however, it exhibits a purely quadratic divergence, that is a divergence void of multiplicative or additive logarithms,
which moreover originates exclusively from the tadpole integral. Because this quadratic divergence is independent of
the field, we are naturally led in Sec. III to absorb it in a redefinition of the bare mass m2

0, without redefining the bare
coupling λ0. We observe then that the solution of the corresponding mass-renormalized gap equation shows no more
divergences, in contrast to what one would naively expect from the fact that the bare coupling was maintained fixed.
Instead, for some values of the parameters, there exists a “critical” value of the cut-off above which the equation
has no solution, and the very question of divergences is not well posed. We explain the origin of this critical cut-off
using a “mean-field approximation” of the gap equation. This approximation is also used to illustrate another type of
situation which could be encountered within certain Φ-derivable approximations, namely the existence of a continuum
limit which is however only reached for extremely large and practically inaccessible values of the cut-off. Both the

1 We choose here a regularization such that the norm of any momentum is limited by Λ. This regularization slightly differs from the
regularization which amounts to limiting the norm of loop momenta only. In fact, only the former seems to be defined consistently as a
regularization at the level of the path integral. It is also easily generalizable to smooth regulating functions, see App. A.
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existence of a critical cut-off and the very slow convergence towards a possible continuum limit, although they cannot
really be referred to as divergences of the solution of the gap equation, present the same limitation than a divergent
solution: they prevent the definition of a cut-off insensitive self-energy. In fact, these inconvenient features can be
traced back to the presence of logarithmically divergent contributions in the mass-renormalized gap equation. These
divergences can be absorbed in a redefinition of the bare coupling, but we stress the fact that these are divergences
of the equation itself not of its solution and as such, the role of coupling renormalization is not to absorb divergences
of M̄2(K), at least in the approximation that we consider in this work. Coupling renormalization is implemented
in Sec. IV and the corresponding completely renormalized gap equation exhibits a solution which seems to exist for
arbitrarily large values of the cut-off Λ, at least in some relevant range of parameters, and converges towards a certain
limit as Λ → ∞. This limit is approached to a very good accuracy (∝ 1/Λ when using a sharp cut-off) already for
“accessible” values of the cut-off.

II. BARE GAP EQUATION

Let us first assume that the bare parameters m2
0 and λ0 are kept independent of Λ. We refer to the corresponding

gap equation as the bare gap equation. Our goal is to discuss the behavior of its solution M̄2(K) as Λ is increased
for fixed K. To this purpose, it is convenient to consider a more general situation where some of the components of
the 4-vector K grow with Λ as well, that is K = ΛK̃ + L, with |ΛK̃ + L| < Λ. Performing the change of variables

Q = ΛQ̃ and introducing the notations M̃2(Q̃) ≡ M̄2(Q)/Λ2, m̃2
0 ≡ m2

0/Λ
2 and φ̃2 ≡ φ2/Λ2, the bare gap equation

(1) becomes

M̃2(K̃ + L/Λ) = m̃2
0 +

λ0

2
φ̃2 +

λ0

2

∫

|Q̃|<1

G̃(Q̃)− λ2
0

2
φ̃2

∫

|Q̃|<1

|Q̃−K̃−L/Λ|<1

G̃(Q̃)G̃(Q̃− K̃ − L/Λ) , (2)

with G̃(Q̃) ≡ 1/(Q̃2 + M̃2(Q̃)). Because m̃2
0 → 0 and φ̃2 → 0 as Λ → ∞, this equation is “compatible” with the

asymptotic behavior

M̃2(K̃ + L/Λ) → M̃2
∞ > 0 , (3)

as Λ → ∞, for fixed K̃ and L, where M̃2
∞ fulfills the self-consistent equation2

M̃2
∞ =

λ0

2

∫

|Q̃|<1

1

Q̃2 + M̃2
∞

. (4)

By “compatible” we mean that if one assumes that the asymptotic behavior (3) is obeyed by the self-energies in
the right-hand-side of Eq. (2), the later produces exactly the same asymptotic behavior for the left-hand-side of the

equation. In particular, we obtain M̄2(K) = M̃2(K/Λ)Λ2 ∼ M̃2
∞ Λ2 that is, the solution of the bare gap equation

exhibits a pure quadratic divergence at leading order in the asymptotic expansion as Λ → ∞ for fixed K. Note that
we have not proven that Eq. (2) admits a solution for sufficiently large Λ. However, the fact that the contribution
of the tadpole integral dominates over the contribution of the bubble integral makes this plausible. This fact is
confirmed numerically for the smallest momentum stored on the grid |K| = km = 5.10−4 (we also take m2

0 = 0.01 and
φ2 = 0.1) together with the announced asymptotic behavior, see the left panel of Fig. 1. In order to save computer
time, the parameters were chosen such that the asymptotic behavior (3) is observed for reasonable, that is to say,
not very large values of the cut-off.

It is interesting to compute the first correction to the asymptotic behavior M̄2(K) ∼ M̃2
∞Λ2. This is done in

App. B. We obtain:

M̄2(K)− M̃2
∞Λ2 → λ∞

[

m2
0

λ0
+

φ2

2

]

− λ2
0

2
φ2

∫

|Q̃|<1

G̃2
∞(Q̃) +

λ∞λ2
0

4
φ2

∫

|P̃ |<1

G̃2
∞(P̃ )

∫

|Q̃|<1

|Q̃−P̃ |<1

G̃∞(Q̃)G̃∞(Q̃ − P̃ ) ,

2 If we consider each side of this equation as a function of M̃2
∞, the left-hand-side increases linearly from 0 to ∞, whereas the right-

hand-side decreases from a strictly positive value to 0, if λ0 > 0 (which we assume to hold throughout this section and the next one).
Then, because both sides of the equation depend continuously on M̃2

∞, there is always a unique and strictly positive solution M̃2
∞, when

λ0 > 0.
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FIG. 1: The left plot represents the ratio M̄2(K)/Λ2 as a function of log
10

Λ (and as a function of Λ in the inset) for

|K| = km = 5.10−4 (the smallest momentum stored on the grid) and the comparison to the asymptotic estimate M̃2

∞, determined

from Eq. (4). The right plot represents the difference M̄2(km) − M̃2

∞ Λ2 as a function of log
10

Λ (and as a function of Λ in
the inset) and the comparison to the asymptotic estimate, as given by the right-hand-side of Eq. (5). The parameters are
m2

0 = 0.01, λ0 = 1, and φ2 = 0.1. For a given Λ the number of discretization points is [100Λ].

(5)

with G̃∞(Q̃) ≡ 1/(Q̃2 + M̃2
∞) and 1/λ∞ ≡ 1/λ0 + (1/2)

∫

|Q̃|<1
G̃2

∞(Q̃). Equation (5) shows that there are no

logarithmic divergences in M̄2(K) as Λ → ∞ for fixed K. This result is confirmed numerically, see the right panel
of Fig. 1. Note also that the divergence of M̄2(K) comes from the tadpole integral only. In contrast, if we were
to consider the perturbative expansion of M̄2(K) in powers of λ0, the corresponding coefficients would diverge with
divergences originating both from the tadpole integral and from the bubble integrals. This result illustrates that,
upon resummation, some of the divergences which appear in the formal perturbative expansion of the solution of the
gap equation, do not appear in the solution itself. Does this mean that there is no need to absorb these perturbative
divergences? This is one of the questions we shall investigate in the next sections.

III. MASS-RENORMALIZED GAP EQUATION

The quadratic divergence M̃2
∞Λ2 discussed in the previous section does not depend on the field φ and we can then try

to “absorb” it by adjusting the bare mass m2
0, which then becomes a function of Λ and keeping the coupling λ0 fixed.3

As already mentioned, the divergence originates from the tadpole integral. However, because the latter depends on
the field φ through the solution M̄2(Q), it cannot be completely absorbed in a redefinition of m2

0. Still, we shall see
below that, in order to remove the divergence, it is enough to choose m2

0 = −(λ0/2)[
∫

|Q|<Λ
G0(Q) + finite part] with

G0(Q) ≡ 1/(Q2+m2) and m2 some fixed renormalized mass. The bare mass is defined up to an additive “finite part”
which we can choose such that the renormalization condition M̄2 = m2 at φ2 = 0 is fulfilled.4 This amounts here to
the particular choice:

m2
0 = m2 − λ0

2

∫

|Q|<Λ

G0(Q) . (6)

3 Due to the presence of the term λ0φ2/2 in Eq. (1), renormalizing the coupling λ0 would mean that the divergence of M̄2(K) contains
a terms proportionnal to φ2, which it has not, see Eq. (3)

4 For φ2 = 0, the self-energy becomes momentum independent and we do not need to specify a particular momentum in the renormalization
condition. Other choices of renormalization points are possible. In particular, if one is interested in discussing the broken phase,
one should rather impose a renormalization condition at a given non-vanishing value of the field, or at vanishing field but non-zero
temperature.
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Plugging this expression into the bare gap equation, we end up with

M̄2(K) = m2 +
λ0

2
φ2 +

λ0

2

∫

|Q|<Λ

[

Ḡ(Q)−G0(Q)
]

− λ2
0

2
φ2

∫

|Q|<Λ
|Q−K|<Λ

Ḡ(Q)Ḡ(Q−K) , (7)

which we refer to as the mass-renormalized gap equation. Note that, because we have modified the dependence of
the equation with respect to Λ, we need to analyze once again the behavior of the solution of Eq. (7) as Λ increases.
Using the same rescaling and notations as in the previous section, we obtain

M̃2(K̃ + L/Λ) = m̃2 +
λ0

2
φ̃2 +

λ0

2

∫

|Q̃|<1

[

G̃(Q̃)− G̃0(Q̃)
]

− λ2
0

2
φ̃2

∫

|Q̃|<1

|Q̃−K̃−L/Λ|<1

G̃(Q̃)G̃(Q̃− K̃ − L/Λ) , (8)

where m̃2 = m2/Λ2 and G̃0(Q̃) ≡ 1/(Q̃2+M̃2(Q̃)). This equation is compatible with M̃2(K̃+L/Λ) ≡ M̄2(ΛK̃+L)/Λ2

becoming smaller and smaller as Λ increases for fixed K̃ and L (this will be confirmed numerically in what follows) and
supports then the fact that the choice (6) for the bare mass eliminates the quadratic divergence. Notice however that
the question of the existence of a solution for any value of Λ is now more subtle than in the case of the bare gap equation
because the contribution of the subtracted tadpole integral does not necessarily dominate over the contribution of
the bubble integral. We shall now study more in detail what happens to the solution of the mass-renormalized gap
equation as Λ is increased.

A. Effect of the bubble integral

Before discussing the mass-renormalized equation (7), let us consider a simpler equation where we focus on the
effect of the bubble integral only, that is:

M̄2(K) = m2
φ − λ2

0φ
2

2

∫

|Q|<Λ
|Q−K|<Λ

Ḡ(Q)Ḡ(Q−K) , (9)

where m2
φ ≡ m2+(λ0/2)φ

2 and λ2
0φ

2 are considered as independent parameters. Such a simplification makes possibly
sense when the field φ dominates over the mass m. Its main purpose here is to introduce, in a simpler context, the
arguments and tools that will be used in order to deal with Eq. (7). Moreover, some of the properties of the solution
of Eq. (7) will be visible here already.

1. Numerical solution

For reasons that will become clear below, we solve Eq. (9) using a differential method, that is by increasing the
cut-off Λ continuously from the initial value Λ = 0 at which the solution of Eq. (9) is known and given by m2

φ. An
“infinitesimal” change from Λ to Λ+δΛ is encoded in an evolution or flow equation which is more conveniently derived
for M̄2(ΛK̃) at K̃ fixed.5 In fact, after a simple change of variables, we can write

M̄2(ΛK̃) = m2
φ − λ2

0φ
2

2

∫

|Q̃|<1

|Q̃−K̃|<1

G̃(Q̃)G̃(Q̃− K̃) , (10)

where we note that the integration domain does not involve the cut-off Λ anymore. Then, taking a derivative with
respect to Λ at fixed K̃, we arrive at the equation

∂ΛM̄
2(ΛK̃) = λ2

0φ
2

∫

|Q̃|<1

|Q̃−K̃|<1

G̃2(Q̃)G̃(Q̃− K̃)

[

1

Λ2
∂ΛM̄

2(ΛQ̃)− 2

Λ3
M̄2(ΛQ̃)

]

, (11)

5 If Λ 6= 0, it is completely equivalent to consider M̄2(K) for |K| < Λ or M̄2(ΛK̃) for |K̃| < 1.
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which can be solved from the initial condition6 limΛ→0 M̄2(ΛK̃) = m2
φ using a Runge-Kutta algorithm combined

with a linear solver based on LU decomposition (see App. E for details). Note that Eq. (11) is compatible

with limΛ→0 ∂ΛM̄
2(ΛK̃) = 0. The flow is then flat at initialization. For practical purposes it is then more

convenient to choose a non-zero, but small value for the initial Λ. We have chosen Λinit = 2km, where km
is the value of the smallest momentum stored on the grid, which is kept fixed in a given run. The result of
integrating the flow equation is shown in Fig. 2 for a particular choice of the parameters m2

φ and λ2
0φ

2. Each curve

corresponds to M̄2(K) for a given value of the cut-off Λ, plotted as a function of the rescaled momentum |K̃| = |K|/Λ.
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FIG. 2: Evolution with Λ of the solution M̄2(K) of Eq. (11) plotted as a function of the rescaled momentum |K̃| = |K|/Λ.
Lower curves correspond to increasing values of Λ. The flow cannot be continued above a certain critical cut-off Λc. The plain
curve represents the solution obtained as Λ → Λ−

c . The dashed curve represents the limiting function (12), which is approached

by M̄2(ΛK̃), at least for |K̃| close to 1 and if Λc is large enough, see the text for details. The parameters are m2

φ = 1 and

λ2

0φ
2 = 50, the smallest momentum stored on the grid is km = 7.5 10−4 and the number of discretization points is 175.

We first observe that as Λ increases the self-energy M̄2(ΛK̃) becomes insensitive to the cut-off in an increasing range

of |K̃|, starting from the highest value |K̃| = 1. This can be understood easily from Eq. (10), which is compatible

with M̃2(Q̃) becoming smaller and smaller as Λ increases and thus with M̄2(ΛK̃) approaching

m2
φ − λ2

0φ
2

2

∫

|Q̃|<1

|Q̃−K̃|<1

1

Q̃2

1

(Q̃− K̃)2
. (12)

This is confirmed in Fig. 2. Of course, since the integral in (12) diverges logarithmically as K̃ → 0, we expect the

agreement between M̄2(ΛK̃) and (12) to be the best for |K̃| close to 1 and to extend over a wider range of |K̃| as Λ
is increased, which is also visible in Fig. 2. As we shall see in a moment, there exists an upper value of the cut-off
which cannot be overpassed. This explains why in Fig. 2, where this upper value is only slightly larger than 12.5
(m2

φ = 1 and λ2
0φ

2 = 50), the agreement between M̄2(ΛK̃) and (12) is only effective in the region where |K̃| is really
close to 1.

The previous remarks do not apply to the neighborhood of K̃ = 0 where M̄2(ΛK̃) remains sensitive to the cut-off
Λ. In order to study more precisely what happens in this small momentum region, in the left plot of Fig. 3 we consider
the evolution with Λ of the self-energy evaluated for |K̃| = 0,7 which we denote by M̄2 = M̄2(0) from now on. We

6 This limit is obtained from Eq. (10) for fixed K̃ using a consistency argument.
7 For numerical convenience we rather evaluate M̄2(K) at |K| = km, which should be regarded as our numerical approximation of M̄2(0).
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observe that, after a relatively smooth evolution, the derivative of M̄2 with respect to Λ becomes infinite (numerically
at least) for some “critical” value Λc and the mass M̄2 approaches a non zero value M̄2

c 6= 0. A fit in the vicinity of
Λc reveals that the singularity is well approximated by

M̄2 − M̄2
c ∝

(

Λc − Λ
)1/2

. (13)

The flow equation (11) suggests that this singular behavior “propagates” to non-zero values of K̃, as we confirm in

the right plot of Fig. 3 for the highest rescaled momentum available on our grid, that is |K̃| = 1. Note also that,
despite the fact that the smallest value of the self-energy, obtained at zero momentum, decreases with increasing Λ
(due to the bubble integral contribution), the flow stops before the propagator develops a pole at zero-momentum.
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FIG. 3: Left plot: evolution with Λ of the self-energy M̄2(ΛK̃) evaluated for |K̃| = 0 (numerically |K̃| = km/Λ). Right plot:

evolution with Λ of the self-energy M̄2(K) evaluated for the highest |K̃| = 1. The parameters are m2

φ = 1 and λ2

0φ
2 = 50,

while km = 7.5 10−4, and the number of discretization points is 175 for the solution of the flow and [400Λ/3] for the iterative
solution.

The presence of a singularity in the flow does not necessarily mean that there is no solution to Eq. (9) above Λc. It
only means that if a solution exists for such values of Λ, it cannot be accessed by integrating the flow equation from
Λ = 0, without any additional information. For a given Λ, we can also solve Eq. (9) using iterations from an initial
(constant or perturbative) ansatz for the self-energy or from a solution to the gap equation obtained at a different
value of the cut-off. The results of such an iterative procedure are represented in the plots of Fig. 3 for some values of
Λ and they compare pretty well with those obtained from the flow equation. We observe that the iterative procedure
fails around Λc as well. This again does not necessarily mean that there is no solution to Eq. (9) above Λc but only that
if a solution exists, it cannot be reached within the iterative approach from the initial ansatz that we have considered.
In order to better grasp the origin of the singularity, we shall now consider a kind of “mean-field approximation”
for Eq. (9) which, because it will decouple the different momenta, will turn the original integral equation (9) into
a certain number of simple numeric equations. The mean-field approximation will not only allow us to understand
analytically the origin of the singularity, it will also allow us to argue that there is indeed no solution to Eq. (9) above
Λc. A similar approximation will be used later to discuss the properties of the original mass-renormalized equation (7).

Before proceeding further with the construction of a mean-field approximation, we add a few remarks concerning
the numerical implementation. On the one hand, since the integration of the flow equation (11) involves the (time
consuming) numerical resolution of a linear system, we are much more limited concerning the number of discretization
points in the case of the flow approach, than in the iterative one. Consequently, the latter provides a more accurate
solution, even though discrepancies with the flow approach only start to appear very close to Λc. On the other hand,
the iterative method is not the best choice for approaching Λc, since the slightest overpassing of Λc will only be visible
after an important number of iterations have been considered and leads thus to an important slowing down in the
process of finding Λc. What is actually observed, by monitoring the change of M̄2(0) between two consecutive iterative
steps, is that the iterative method seemingly converges in its first stage, but after a large number of iterations the
procedure clearly diverges. By increasing the precision of the numerical integration and the number of discretization
points we could convince ourselves that it is unlikely that this feature is the consequence of error accumulation. In
contrast, the integration of the flow equation with adaptive step-size is such that the flow remains always below Λc.
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There is also a numerical slowing down as we approach the singularity, but it is globally less important than with the
iterative approach, because none of the generated data is wasted.

2. Mean-field approximation

Let us first consider the small |K̃| region. As we already argued and as we checked numerically, M̃2(Q̃) becomes

smaller and smaller as the cut-off increases. Then, the integral in Eq. (10) in the region of small |K̃| is dominated by

small values of |Q̃| and it makes sense to consider the following approximation for the zero momentum self-energy

M̄2 ≡ M̄2(0) = m2
φ − λ2

0φ
2

2

∫

|Q|<Λ

1

(Q2 + M̄2)2
, (14)

obtained from Eq. (9) by setting K = 0 and replacing the self-energy appearing in the bubble integral by its value at
Q = 0. For non-zero values of |K|, we consider the following approximation

M̄2(K) = m2
φ − λ2

0φ
2

2

∫

|Q|<Λ
|Q−K|<Λ

1

Q2 + M̄2

1

(Q−K)2 + M̄2(K)
, (15)

where we have replaced the integral by the contributions obtained when one of the propagators reaches the smallest
mass, that is M̄2 = M̄2(0).8 There are two such contributions, one corresponding to Q = 0 the other to Q +K = 0
which should be added if we were really restricting the integration domain. But because we continue integrating over
the whole domain, the two contributions need to be averaged. However, due to the particular UV regularization that
we have considered, the two contributions over which we average are identical and we finally end up with Eq. (15).
As announced, we have now a certain number of decoupled equations parametrized by K. All equations depend on
M̄2, which needs to be determined first from Eq. (14). This approximation can certainly not allow us to access the
actual solution of Eq. (9) and the actual value of Λc. We are however only interested in the properties of M̄2(K)
as Λ increases and those seem to be pretty well captured by the approximation, as we can see in the comparison
depicted in Fig. 4. Although this is not directly visible on all curves, they all present a singularity of the type (13)
for some critical cut-off Λc. For identical values of the parameters, the value of the critical cut-off is different between
the “exact” equation and its mean field approximation. However, note that the corresponding evolutions with Λ are
rather close to each other when plotted against the reduced cut-off Λ/Λc.
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FIG. 4: A comparison between the mean-field (lines) and exact (points) solution of the respective equations (9) and (14)-(15)

for M̄2(ΛK̃) as a function of the reduced cut-off Λ/Λc, at |K̃| = Λ and |K̃| = 0 (inset). For parameters m2

φ = 1 and λ2

0φ
2 = 50

the critical cut-off is Λc = 12.54 in the exact case and Λc = 9.35 in the mean-field case.

8 The self-energy appears to be a monotonously increasing function of |K|, see also the discussion in App. D.
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Let us now use the mean-field approximation to understand analytically the behavior of M̄2(ΛK̃) as Λ increases.
We shall focus on Eq. (14), since the appearance of a singularity in the flow of the zero-momentum self-energy triggers

the appearance of a singularity in the flow of M̄2(ΛK̃) for any other K̃. Our goal is to discuss how the solutions of
Eq. (14) evolve with Λ. To this purpose, we rewrite this equation as 0 = fΛ(M̄

2) with

fΛ(M
2) ≡ −M2 +m2

φ − λ2
0φ

2

2

∫

|Q|<Λ

1

(Q2 +M2)2
, (16)

and study the shape and the zeros of fΛ(M
2) as Λ increases. For Λ = 0, f0(M

2) = −M2 + m2
φ and Eq. (14) has

one solution only: M̄2 = m2
φ. To treat the case Λ > 0, we consider the first and second derivatives of fΛ(M

2) with

respect to M2:

f ′
Λ(M

2) = −1 + λ2
0φ

2

∫

|Q|<Λ

1

(Q2 +M2)3
, (17)

f ′′
Λ(M

2) = −3λ2
0φ

2

∫

|Q|<Λ

1

(Q2 +M2)4
. (18)

Because f ′′
Λ(M

2) < 0 , f ′
Λ(M

2) decreases strictly from f ′
Λ(0

+) = ∞ (the integral in Eq. (17) is infrared divergent)
to f ′

Λ(∞) = −1 (the same integral is suppressed for M2 ≫ Λ2). If we denote by M̄2
e (Λ) the only value of M2 at

which f ′
Λ(M

2) vanishes, we conclude that fΛ(M
2) has a maximum for M2 = M̄2

e (Λ). More precisely, it increases
strictly from fΛ(0

+) = −∞ (the integral in Eq. (16) is infrared divergent) to fΛ(M̄
2
e (Λ)) and then decreases towards

fΛ(∞) = −∞ (the same integral is suppressed for M2 ≫ Λ2). It follows that the number of solutions of the equation
0 = fΛ(M̄

2) depends on the sign of fΛ(M̄
2
e (Λ)). To discuss this sign, note that by definition 0 = f ′

Λ(M̄
2
e (Λ)). It

follows then that

d

dΛ
M̄2

e (Λ) = − 1

f ′′
Λ(M̄

2
e (Λ))

∂f ′
Λ

∂Λ
= − λ2

0φ
2

8π2f ′′
Λ(M̄

2
e (Λ))

Λ3

(Λ2 + M̄2
e (Λ))

3
> 0 , (19)

and

d

dΛ
fΛ(M̄

2
e (Λ)) =

∂fΛ
∂Λ

= −λ2
0φ

2

16π2

Λ3

(Λ2 + M̄2
e (Λ))

2
< 0 . (20)

Thus M̄2
e (Λ) increases strictly with Λ whereas fΛ(M̄

2
e (Λ)) decreases strictly with Λ. Let us now determine the

extremal values of M̄2
e (Λ) and fΛ(M̄

2
e (Λ)). After performing the integral in Eq. (17), the equation defining M̄2

e (Λ)
reads

0 = −1 +
λ2
0φ

2

32π2

Λ4

M̄2
e (Λ)(Λ

2 + M̄2
e (Λ))

2
. (21)

Now, because M̄2
e (Λ) increases strictly with Λ, it has a limit as Λ → 0+, and it has a limit or goes to ∞ as Λ → ∞.

From Eq. (21), it is easily seen that the limit as Λ → 0+ is necessarily 0 and that M̄2
e (Λ) cannot diverge as Λ → ∞.

We finally obtain

M̄2
e (Λ) → 0 as Λ → 0+ and M̄2

e (Λ) →
λ2
0φ

2

32π2
as Λ → ∞ . (22)

We need to be more accurate concerning the behavior of M̄2
e (Λ) as Λ → 0+. It is easily checked that

M̄2
e (Λ)

Λ2
→ ∞ as Λ → 0+ . (23)

Similarly, fΛ(M̄
2
e (Λ)) reads explicitly

fΛ(M̄
2
e (Λ)) = −M̄2

e (Λ) +m2 − λ2
0φ

2

32π2

[

ln
Λ2 + M̄2

e (Λ)

M̄2
e (Λ)

− Λ2

Λ2 + M̄2
e (Λ)

]

. (24)

Using Eqs. (22) and (23), we finally obtain that

fΛ(M̄
2
e (Λ)) → m2 as Λ → 0+ and fΛ(M̄

2
e (Λ)) ∼ −λ2

0φ
2

32π2
ln Λ2 as Λ → ∞ . (25)
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To summarize fΛ(M̄
2
e (Λ)) decreases strictly from f0+(M̄

2
e (0

+)) = m2 > 0 to f∞(M̄2
e (∞)) = −∞. Thus there

exists a critical value Λc such that fΛc(M̄
2
e (Λc)) = 0 and above which 0 = fΛ(M̄

2) has no solution, as announced
earlier. Notice that what drives fΛ(M̄

2
e (Λ)) to negative values is the presence of a logarithmic divergence. This is

not a logarithmic divergence of the solution M̄2 (the later ceases to exist at Λc) but a divergence of the equation itself.

The behavior around Λc can now be understood from the following argument. The critical cut-off Λc is defined as
the particular value of Λ at which the maximal value fΛ(M̄

2
e (Λ)) equals zero. Denoting by M̄2

c the value of M̄2
e (Λ)

at Λ = Λc,
9 we have 0 = f ′

Λc
(M̄2

c ) and 0 = fΛc(M̄
2
c ). If we now expand the equation 0 = fΛ(M̄

2) around Λ = Λ̄c and

M̄2 = M̄2
c , we obtain

0 = fΛ(M̄
2) = fΛc(M̄

2
c ) + f ′

Λc
(M̄2

c )(M̄
2 − M̄2

c ) +
1

2
f ′′
Λc
(M̄2

c )(M̄
2 − M̄2

c )
2 + . . .

+
∂fΛ
∂Λ

∣

∣

∣

∣

Λc,M̄2
c

(Λ− Λc) + . . . , (26)

where in the first line we have expanded up to second order because the first two terms vanish. We then obtain that,
in the vicinity of the critical point

|M̄2 − M̄2
c | ∼

(

2

f ′′
Λc
(M̄2

c )

∂f

∂Λ

∣

∣

∣

∣

Λc,M̄2
c

)

(Λc − Λ)1/2 , (27)

which is similar to the behavior given in Eq. (13).
It is finally interesting to study how the critical cut-off depends on the parameters. It is convenient to introduce

the rescaled quantities φ̂ ≡ λ0φ/(4π
√
2), m̂ ≡ mφ/φ̂, M̂c ≡ M̄c/φ̂, and Λ̂c ≡ Λc/φ̂, in terms of which the equations

defining the critical point, that is 0 = f ′
Λc
(M̄2

c ) and 0 = fΛc(M̄
2
c ), can be rewritten in the form

0 = m̂2 − M̂2
c + M̂c + ln(1− M̂c) , Λ̂c =

M̂
3/2
c

(1− M̂c)1/2
. (28)

A straightforward analysis then leads to

M̂c − 1 ∼ −e−m̂2

and Λ̂c ∼ em̂
2/2 , (29)

as m̂2 → ∞. The complete dependence of M̂c and Λ̂c with respect to m̂2 as obtained from Eq. (28) is plotted in
Fig. 5 and compared to the asymptotic estimates given in Eq. (29). We see that the asymptotic forms given in
Eq. (29) are pretty good approximations of the exact solutions of Eq. (28), even for small values of m̂.
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FIG. 5: The dependence on the rescaled parameter m̂ of the rescaled critical mass M̂c and the rescaled critical cut-off Λ̂c (inset)
as obtained from Eq. (28) in comparison to the corresponding asymptotic estimates (29).

9 This is also the value of the (unique) solution M̄2 at Λ = Λc.
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B. Combined effect of the tadpole and the bubble integral

We now move to the original mass-renormalized gap equation given by Eq. (7) or Eq. (8), which includes both
the effect of the tadpole and the bubble integrals. We first solve this equation for increasing values of Λ using a
flow equation that we derive along the same lines as in the previous section, see the text around Eqs. (10) and (11).
Starting from Eq. (7) one obtains

∂ΛM̄
2(ΛK̃) = λ0Λ

∫

|Q̃|<1

[

(

Q̃2 +
2

Λ2
M̄2(ΛQ̃)

)

G̃2(Q̃)−
(

Q̃2 +
2

Λ2
m2
)

G̃2
0(Q̃)

]

− λ0

2

∫

|Q̃|<1

G̃2(Q̃)∂ΛM̄
2(ΛQ̃)

+λ2
0φ

2

∫

|Q̃|<1

|Q̃−K̃|<1

G̃2(Q̃)G̃(Q̃− K̃)

[

1

Λ2
∂ΛM̄

2(ΛQ̃)− 2

Λ3
M̄2(ΛQ̃)

]

, (30)

where G̃0(Q̃) ≡ 1/(Q̃2 + m̃2) and m̃2 = m2/Λ2. This equation is solved with the method outlined in App. E and its
solution is presented in Fig. 6. We observe that the behavior for increasing Λ is similar to the one obtained previously
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FIG. 6: Evolution with Λ of the solution M̄2(K) of Eq. (30) plotted as a function of the rescaled momentum |K̃| = |K|/Λ.
The parameters are m2 = 0.49, λ0 = 20, and φ2 = 4, while km = 3.75 10−4 and the number of discretization points is 500.

without the inclusion of the tadpole integral and that there is again a critical value of the cut-off which cannot be
overpassed. In order to save computer time, the particular values of the parameters given in the figure caption were
chosen such as to observe this behavior for not too large values of Λ. A similar behavior is observed for smaller values
of the coupling, but then the value of Λc is larger. An analysis of the dependence of the critical cut-off with respect
to the parameters is given below. The region around |K̃| = 1 is well approximated by (12) even tough there is now an

additional (momentum-independent) contribution originating from the tadpole integral. The region around |K̃| = 0
is still sensitive to Λ and, as shown in Fig. 7, close to the critical value of the cut-off Λc at which the flow becomes
singular, the solution of the flow is approximated by Eq. (13). As before, this singularity propagates to any value of

K̃, and again we can try to understand the origin of the singularity using a mean-field approximation, which consists
in an equation for the zero momentum self-energy

M̄2(0) ≡ M̄2 = m2 +
λ0

2
φ2 +

λ0

2

∫

|Q|<Λ

[

1

Q2 + M̄2
− 1

Q2 +m2

]

− λ2
0

2
φ2

∫

|Q|<Λ

1

(Q2 + M̄2)2
, (31)

as well as a set of decoupled equations for each value K (the equations are coupled to M̄2 though):

M̄2(K) = m2 +
λ0

2
φ2 +

λ0

2

∫

|Q|<Λ

[

1

Q2 + M̄2
− 1

Q2 +m2

]

− λ2
0

2
φ2

∫

|Q|<Λ
|Q+K|<Λ

1

Q2 + M̄2

1

(Q +K)2 + M̄2(K)
. (32)
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Again, we do not expect these equations to reproduce the actual values of M̄2(K) and Λc. However, they seem to

describe the large Λ behavior correctly, at least for small values of |K̃|, see Fig. 8. Although this is not always visible,
all evolutions plotted in Fig. 8 present a singularity for some critical cut-off. Both in the case of the exact equation
and its mean field approximation, the singularity is approached from above for small values of |K̃| and from below

for values of |K̃| close to 1. Note also that for |K̃| ≪ 1, the agreement between the exact equation and its mean field
approximation is remarkably good in the whole cut-off range, once the cut-off has been rescaled by the corresponding
Λc. The quantitative discrepancies observed for non-small values of |K̃| and Λ close to Λc can be traced back to the
fact that replacing the self-energy by the zero momentum self-energy in the subtracted tadpole integral is not such a
good approximation as in the case of the bubble integral. Below, we will discuss another limitation of the mean-field
approximation.
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FIG. 7: Left plot: evolution with Λ of the self-energy M̄2(ΛK̃) evaluated for |K̃| = 0 (numerically |K̃| = km/Λ). Right plot:

evolution with Λ of the self-energy M̄2(K) evaluated for |K̃| = 1. The parameters are m2 = 0.49, λ0 = 20, and φ2 = 4, while
km = 7.5 10−4, and the number of discretization points is 400 for the solution of the flow and [100Λ] for the iterative solution.
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FIG. 8: A comparison between the mean-field (lines) and exact (points) solution of the respective equations for M̄2(ΛK̃) as

a function of the reduced cut-off Λ/Λc, at various values of |K̃|. For parameters m2 = 0.49, λ0 = 20, and φ2 = 4, the critical
cut-off is Λc = 89.01 in the exact and Λc = 102.73 in the mean-field case.
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Equation (31) can be put in the form 0 = gΛ(M̄
2) with

gΛ(M
2) ≡ −M2 +m2 +

λ0

2
φ2 +

λ0

32π2

[

m2 ln
Λ2 +m2

m2
−M2 ln

Λ2 +M2

M2

]

− λ2
0φ

2

32π2

[

ln
Λ2 +M2

M2
− Λ2

Λ2 +M2

]

. (33)

It can be studied analytically along the same lines as the equation 0 = fΛ(M̄
2) above. The shape of gΛ(M

2) is
similar to that of fΛ(M

2): it increases from gΛ(0
+) = −∞ to gΛ(M̄

2
e (Λ)) and then decreases to −∞. The situation

seems thus pretty similar to the one concerning the function fΛ(M
2): the existence of solutions to the equation

0 = gΛ(M̄
2) depends on the sign of gΛ(M̄

2
e (Λ)). However, the discussion of the sign of gΛ(M̄

2
e (Λ)) is a little bit more

involved than that of fΛ(M̄
2
e (Λ)) and for this reason we relegate it to App. C and focus here on the results. The

main difference with respect to the case of the function fΛ(M
2) is that the behavior of the solution M̄2 at large Λ

depends now on the choice of parameters:

1. If m2 ≤ λ0φ
2, there is a critical cut-off Λc above which the mean-field approximated equation (31) has no

solution. This situation is similar to the one we have discussed in the previous section. The behavior in the
vicinity of Λc is again |M̄2 − M̄2

c | ∝ (Λc − Λ)1/2 which is also what is obtained by fitting the solution of the
original equation, see Fig. 7. This comes as no surprise since the explanation for the critical behavior is exactly
the same as in the previous section, see App. C. The plot of Fig. 9 gives an idea of how Λc depends on the
parameters. The critical cut-off increases rapidly as the coupling decreases, so one could argue that for moderate
values of the coupling it plays no role. However, as shown in Fig. 10 there is an important variation of M̄2 in
the range [0,Λc] which prevents the definition of a cut-off insensitive solution. One could try to obtain a less
sensitive solution by restricting the interval over which Λ is varied. For instance, if we suppose that m = 100MeV,
φ2/m2 = 0.1, and λ0 = 12 then Λc/m ∼ 1040, whereas the highest relevant scale we can conceive so far is
the Plank mass, which would correspond to Λ/m ∼ 1020. Even if we would restrict the cut-off to vary in this
window, we would observe an important variation of the mass, which prevents the definition of a cut-off independent
result. If we consider as an upper cut-off the electroweak scale, Λ/m ∼ 103, the variation is smaller but still important.
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FIG. 9: Iso-(Λc/m) curves in the (λ0, λ0φ
2/m2) plane. The label on the curves indicates the value of log

10
Λc.

2. If m2 > λ0φ
2, Eq. (31) has always two-solutions. The one which is continuously connected by the flow to the

unique solution at Λ = 0, and which thus corresponds to the solution of the mass-renormalized gap equation plotted
in Fig. 6, converges to the limit m2 − λ0φ

2 as Λ → ∞. As we show in App. C, this limit is approached very slowly:

M̄2 − (m2 − λ0φ
2) ∼ 1

lnΛ2

(

(λ0 + 48π2)φ2 +m2 ln
m2 − λ0φ

2

m2

)

. (34)
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We also show that in this case, the solution M̄2(K) of Eq. (32) is defined for arbitrary large values of Λ and that the
equation is compatible with M̄2(K) having a continuum limit M̄2

∞(K), solution of the following finite equation

M̄2
∞(K) = m2 − λ0φ

2 − λ2
0

2
φ2

∫

Q

1

Q2 +m2 − λ0φ2

[

1

(Q−K)2 + M̄2
∞(K)

− 1

Q2 +m2 − λ0φ2

]

. (35)

For all practical purposes, the very slow convergence towards the continuum limit prevents the definition of cut-off
independent result. In fact, this continuum limit cannot be considered too seriously because it is only reached for
cut-off scales far beyond the regime of applicability of the model. As already mentioned, one could then try to define
cut-off independent results by restricting the range of variation of the cut-off. But as it was already the case in the
previous point, the variation of M̄2 with respect to the cut-off remains important.
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FIG. 10: Solution of the mean field approximated equation (31) for m2 = 1, φ2 = 0.1 and different values of the coupling
λ0. The figure illustrates the transition between the cases 1. and 2. discussed in the text. Starting from a situation where
m2 < λ0φ

2, and thus such that the equation has no solution above a certain Λc, the coupling is lowered down to a situation
where m2 > λ2

0φ
2, and thus such that a continuum limit exists. As we decrease λ0 and approach the case m2 = λ0φ

2, Λc

increases. Right when m2 = λ0φ
2, Λc is still finite but incredibly large. As soon as m2 > λ0φ

2, there is no critical cut-off
but rather a continuum limit (thin horizontal line) which is approached very slowly, as indicated by the dashed line which
represents the asymptotic estimate given in Eq. (34).

In contrast to case 1., it is difficult to test numerically whether case 2. is relevant for the original mass renormalized
equation (7) simply because we cannot access such incredibly large values of the cut-off where a continuum limit
could be observed. Even though case 2. could occur in certain Φ-derivable approximations (see [17] for an example
of truncation where it occurs), we do not believe that it occurs in the original mass-renormalized gap equation of the
present Φ-derivable approximation, as we now explain. Note first that the existence of a continuum limit in the mean
field approximated equation can be understood as follows. Using similar manipulations as in App. B, Eq. (31) can be
rewritten as

M̄2 = m2 +
λ

2
φ2 +

λ

2

∫

|Q|<Λ

(M̄2 −m2)2G2
0(Q)Ḡ(Q)

− λ2
0

2
φ2

∫

|Q|<Λ

Ḡ2(Q) +
λ2
0λ

4
φ2

∫

|Q|<Λ

G2
0(Q)

∫

|P |<Λ

Ḡ2(P ) , (36)

with 1/λ = 1/λ0 + (1/2)
∫

|Q|<Λ
G2

0(Q). It is easy to check that this equation is compatible with the existence of a

continuum limit for M̄2. Indeed, using

∫

|Q|<Λ

Ḡ2(Q) = − 1

16π2
ln

Λ2

m2
+ convergent , (37)
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and the fact that λ ∼ 32π2/ lnΛ2, one checks that the divergences in the last two contributions of Eq. (36) compensate
and that the only possible continuum limit is m2−λ0φ

2 when m2 > λ0φ
2, as obtained in App. C. The cancellation of

divergences is due to the fact that the last integral in Eq. (36) is the product of two decoupled single bubble integrals.
It follows that its leading divergence is the square of the divergence of the bubble integral:

∫

|Q|<Λ

G2
0(Q)

∫

|P |<Λ

Ḡ2(P ) =
1

(16π2)2

(

ln
Λ2

m2

)(

ln
Λ2

M̄2

)

+ . . . . (38)

If we now use the same approach to discuss the original mass renormalized equation (7), we obtain

M̄2(K) = m2 +
λ

2
φ2 +

λ

2

∫

|Q|<Λ

(M̄2(Q)−m2)2G2
0(Q)Ḡ(Q)

− λ2
0

2
φ2

∫

|Q|<Λ
|Q−K|<Λ

Ḡ(Q)Ḡ(Q −K) +
λ2
0λ

4
φ2

∫

|Q|<Λ

G2
0(Q)

∫

|P |<Λ
|P−Q|<Λ

Ḡ(P )Ḡ(P −Q) , (39)

where we observe in particular that the momenta in the last integral are now coupled. This coupling is enough to
modify the leading divergence of the integral10 which is not anymore the square of the divergence of the bubble
integral but only half of it:

∫

|Q|<Λ

G2
0(Q)

∫

|P |<Λ
|P−Q|<Λ

Ḡ(P )Ḡ(P −Q) =
1

2

1

(16π2)2

(

ln
Λ2

m2

)2

+ convergent , (40)

as we show in App. D. The divergences of the r.h.s. of Eq. (39) do not cancel anymore and the right-hand-side
behaves as −(λ2

0φ
2/(32π2)2)(lnΛ2/m2)2. This is incompatible with the existence of a continuum limit since

the solution of the gap equation cannot become negative. It is then most probable that the solution of the
original mass-renormalized gap equation ceases to exist beyond some value of the cut-off, just as described in
case 1. Anyway, irrespectively of the fact that case 2. is relevant for the original mass renormalized equation
or not, it is clear from our analysis that renormalizing the mass without renormalizing the coupling, although it
does not lead to a divergence of the solution of the mass equation, is not sufficient to ensure the insensitivity of
the solution with respect to the cut-off. In the next section, we cure this problem by means of coupling renormalization.

IV. COMPLETELY RENORMALIZED EQUATION

The analysis of the previous section shows that the presence of logarithmic divergences in the mass-renormalized
gap equation does not always translate into logarithmic divergences of its solution. Instead, these divergences are
responsible for the appearance of a critical cut-off Λc above which the gap equation has no more solutions or could
also lead to the existence of a continuum limit which is however only reached for incredibly large, and practically
inaccessible, values of the cut-off. These features prevent the existence of solutions of the gap equation which
are insensitive to the cut-off. In this section, we explain how to get rid of these effects and define a completely

renormalized gap equation whose results are insensitive to the cut-off already for moderate values of the cut-off (up
to terms of order 1/Λ when one uses a sharp cut-off). The idea is to use coupling renormalization, not to absorb
subdivergences of the self-energy M̄2(K) (there are no such divergences as we have seen), but to eliminate the
remaining divergences of the gap equation. In this way, one can hope to get rid of the undesirable effects mentioned
above.

10 We assume that the self-energy does not play a role in the divergences of the bubble and the double integrals. This comes from the fact
that, in the present truncation, the self-energy does not modify the leading UV contribution to the inverse propagator and also from
the fact that the bubble integral has a vanishing superficial degree of divergence and that the only divergences in the double integral
come from |P | → ∞ or |P |, |Q| → ∞, but not from |Q| → ∞.
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A. Renormalization method

The main difficulty is that one should be able to perform the renormalization program outlined above using a field-
independent bare coupling. It is not necessarily possible to do so if one keeps the original form of the gap equation.
We know how to proceed if we slightly modify the original equation into [15]

M̄2(K) = m2 +
λ2

2
φ2 +

λ0

2

∫

|Q|<Λ

[

Ḡ(Q)−G0(Q)
]

− λ2

2
φ2

∫

|Q|<Λ
|Q−K|<Λ

Ḡ(Q)Ḡ(Q−K) , (41)

by allowing the bare couplings λ0 and λ2 to be different.11 Note also that the bubble integral is multiplied by
λ which will later become the renormalized coupling. There exist different but equivalent approaches to explain
how the bare couplings λ0 and λ2 need to be chosen. Here we follow a method which, although it does not
allow to capture the general structure behind the renormalization of Φ-derivable approximations, has the advantage
of being very similar to the approach used to renormalize the gap equation in the presence of the tadpole integral only.12

The first step is to decompose the self-energy into a local and a non-local part M̄2(K) = M̄2
l + M̄2

nl(K) with

M̄2
l = m2 +

λ2,l

2
φ2 +

λ0

2

∫

|Q|<Λ

[

Ḡ(Q)−G0(Q)
]

, (42)

M̄2
nl(K) =

λ2,nl

2
φ2 − λ2

2
φ2

∫

|Q|<Λ
|Q−K|<Λ

Ḡ(Q) Ḡ(Q −K) , (43)

where, for convenience, we have split the bare parameter λ2 as λ2 = λ2,l+λ2,nl. The decomposition of the self-energy
into local and non-local parts was used also in [18–20] and it naturally arises when working in the auxiliary field
formalism. The integral in Eq. (43) introduces a cut-off sensitivity in the gap equation which, as we have seen, does
not lead to a divergence of the solution but has some undesirable effects. To get rid of those, we can try to absorb
the sensitivity by choosing

λ2,nl = λ2

∫

|Q|<Λ

G2
0(Q) . (44)

The usual consensus is that this choice is enough to absorb the sensitivity of M̄2
nl(K) with respect to the cut-off

because we expect that this sensitivity does not depend on the self-energy. In fact the self-energy is expected to grow
logarithmically at large momentum.

Let us now treat the local contribution M̄2
l . Using the identity:

Ḡ(Q) = G0 − (M̄2(Q)−m2)G0(Q)Ḡ(Q) = G0 − (M̄2(Q)−m2)G2
0(Q) + (M̄2(Q)−m2)2G2

0(Q)Ḡ(Q) , (45)

we write M̄2
l as

M̄2
l = m2 +

λ2,l

2
φ2 − λ0

2

∫

|Q|<Λ

(M̄2(Q)−m2)G2
0(Q) +

λ0

2

∫

|Q|<Λ

(M̄2(Q)−m2)2G2
0(Q)Ḡ(Q) . (46)

We expect the last integral not to be sensitive to large values of the cut-off. In contrast, the first integral is sensitive
to Λ. Using the decomposition of M̄2(Q) into a local and a non-local part in the first integral, we arrive at

(M̄2
l −m2)

[

1

λ0
+

1

2

∫

|Q|<Λ

G2
0(Q)

]

=
λ2,l

λ0

φ2

2
− 1

2

∫

|Q|<Λ

M̄2
nl(Q)G2

0(Q)

11 These two different bare couplings should be seen as two different approximations to the unique bare coupling of the exact theory.
The reason why these two bare couplings are different in a given truncation is that they will renormalize divergences originating from
different diagrammatic topologies.

12 In a forthcoming work, we shall apply the same method at finite temperature. There, we will make contact with the more general
approaches developed in [15].
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+
1

2

∫

|Q|<Λ

(M̄2(Q)−m2)2G2
0(Q)Ḡ(Q) . (47)

We are now in a situation where we can use the same trick as in the case where the tadpole contribution is present
only. We set

1

λ0
=

1

λ
− 1

2

∫

|Q|<Λ

G2
0(Q) , (48)

which leads to

M̄2
l = m2 +

λ

2

[

λ2,l

λ0
φ2 −

∫

|Q|<Λ

M̄2
nl(Q)G2

0(Q)

]

+
λ

2

∫

|Q|<Λ

(M̄2(Q)−m2)2G2
0(Q)Ḡ(Q) . (49)

However, the first integral is still potentially sensitive to the cut-off. We could absorb this sensitivity by adjusting
λ2,l but for this to be possible the sensitivity should be proportional to φ2. To check this, note that M̄2

nl(K) can be
written as

M̄2
nl(K) =

λ2

2
φ2







∫

|Q|<Λ

G2
0(Q)−

∫

|Q|<Λ
|Q−K|<Λ

G0(Q)G0(Q−K)







+
λ2

2
φ2







∫

|Q|<Λ
|Q−K|<Λ

G0(Q)G0(Q−K)−
∫

|Q|<Λ
|Q−K|<Λ

Ḡ(Q)Ḡ(Q−K)






. (50)

Because we expect the second term of this equation to decrease fast enough at large |K|, the sensitivity of the first
integral in Eq. (49) originates exclusively from the first line of Eq. (50) and is thus proportional to φ2, as needed. The
remaining sensitivity in Eq. (49) can thus be absorbed by adjusting λ2,l such that

λ2,l

λ0
− λ2

2

∫

|Q|<Λ

G2
0(Q)







∫

|R|<Λ

G2
0(R)−

∫

|R|<Λ
|R−Q|<Λ

G0(R)G0(R −Q)






= 1 . (51)

The choice of 1 in the r.h.s. of this condition is such that λ2 = λ0 +O(λ2), as it should be at this order of accuracy.13

Using Eq. (51) and (50) in Eq. (49) and adding the non-local contribution (43) with the choice of λ2,nl given in
Eq. (44), we finally arrive at the completely renormalized gap equation

M̄2(K) = m2 +
λ

2
φ2 +

λ

2

∫

|Q|<Λ

(M̄2(Q)−m2)2G2
0(Q)Ḡ(Q)

− λ2

2
φ2







∫

|Q|<Λ
|Q−K|<Λ

Ḡ(Q)Ḡ(Q−K)−
∫

|Q|<Λ

G2
0(Q)







+
λ3

4
φ2

∫

|Q|<Λ

G2
0(Q)







∫

|R|<Λ
|R−Q|<Λ

Ḡ(R)Ḡ(R −Q)−
∫

|R|<Λ
|R−Q|<Λ

G0(R)G0(R −Q)






. (52)

An equation of similar form was derived using slightly different renormalization conditions in [19] and also in [21]. It
was solved together with the field equation at finite temperature in Minkowski space [19] and at zero temperature in
Euclidean space [21]. Here, we solve this equation for a fixed value of φ.

13 We mention here that the splitting of λ2 in local and non-local parts is completely arbitrary and that the actual expression of both
parts depend on the procedure used to determine them. Indeed, the interested reader can check that if one multiplies Eq. (47) by λ0

and writes its l.h.s. in a form similar to that in (B3), then the inversion of the resulting operator (see (B4)) results in a different form
for δλ2,l and δλ2,nl. But this is not a problem at all, for what matters is that this different procedure gives the very same expression
for λ2 in terms of divergent integrals.
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FIG. 11: The cut-off dependence of the converged value of M̄2(km) obtained from the solution of the completely renormalized
equation as compared to the solution M̄2 of the toy equation with and without the inclusion of the two double integrals.
M̄2(km) converged with 10−7 accuracy after 7 iterations. The inset at the left shows that M̄2(km) depends non monotonously
on Λ and approaches the asymptotic value as 1/Λ. The inset at the right shows the approach of the converged value of M̄2(km)
in the case of the highest cutoff used. The model parameters are: m2 = 1, λ = 10, and φ2 = 0.2. The number of discretization
points is [100Λ] and km = 5.10−4 .

B. Numerical solution of Eq. (52) and discussion

Figure 11 represents the numerical solution of Eq. (52) for increasing values of Λ and of some approximated versions
of this equation obtained by using a mean-field approximation and keeping or dropping the double integrals in
Eq. (52). The solution of these equations are compatible with the existence of a continuum limit, which is approached
relatively fast, as 1/Λ in the case of the sharp cut-off that we have chosen here. It is important to realize that the bare
coupling redefinitions that we have obtained are precisely such that, if one would expand the solution of the original
bare gap equation (41) in powers of the renormalized coupling λ, the coefficients of the expansion would converge as
Λ → ∞, see [21] for a diagrammatic representation of this fact. Thus, even though the divergences of such a perturba-
tive expansion do not always appear as divergences of the solution of the gap equation, the “correct” renormalization
procedure needs to get rid of those as well, in order to avoid undesirable features such as those we have pointed out
previously. This reinforces our belief that, although the two-point function is defined non-perturbatively, constructing
a renormalization procedure which remove those divergences which appear when expanding formally the two-point
function in powers of the coupling, is a sensible thing to do. We insist once again that this is a priori not obvious
because the object we are finally considering is the solution of a self-consistent equation, not its perturbative expansion.

Note that without a deeper analysis of the existence and the nature of the solutions of Eq. (52), we cannot really
conclude to the existence of a continuum limit. But this is not so important, for what really matters is that there
exists a wide range of cut-off scales, far above m and φ, where the solution exists and is almost insensitive to the
cut-off, to within power law corrections, as it is shown in Fig. 11. In fact from Eq. (48) it follows that, if one wants
to maintain λ0 > 0, one has to choose λ > 0 and Λ below a certain scale Λp (Landau scale) defined by

0 =
1

λ
− 1

2

∫

|Q|<Λp

1

(Q2 +m2)2
≈ 1

λ
− 1

32π2
ln

Λ2
p

m2e
. (53)

In the regime of interest, that is when m,φ ≪ Λ,Λp, we can fulfill simultaneously the requirements that the solution
is almost insensitive to the cut-off Λ and that Λ < Λp. Taking values of Λ above Λp almost does not change the
solution, although this corresponds to negative λ0. Note also that, as long as λ0 > 0, we have λ2 > 0. This is because
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λ2,nl > 0 and

λ2,l = λ0

[

1 +
λ2

2

∫

|Q|<Λ

G2
0(Q)

[

B0(Q)−B0(0)
]

]

(54)

is positive since, as we show in Appendix D, the perturbative bubble integral defined with G0 as

B0(K) ≡ −
∫

|Q|<Λ
|Q−K|<Λ

G0(Q)G0(Q−K), (55)

is a monotonously increasing function of |K|.

Another interesting question is the following. We have considered a renormalization condition for the mass at
φ2 = 0 which somehow assumes that the system is in the symmetric phase (since φ = 0 is accessible). Because the
self-energy at zero momentum should represent the curvature of the effective potential (in the exact theory at least),
we expect it to be defined and positive for any value of φ (at least as long as φ does not become of the order of
the Landau scale Λp). However this is not necessarily guaranteed because the completely renormalized gap equation
involves contributions with different signs. This issue will also appear when studying the problem at finite temperature
because we shall perform renormalization at some high temperature T⋆ where we will require that the system is in its
symmetric phase by imposing that the self-energy at zero momentum and zero field be positive. We will then have to
check, probably numerically, that the self-energy at T = T⋆ and zero momentum remains positive as we increase the
field. Here, we propose a discussion of this issue, at T = 0 and on a simplified version of the gap equation which allows
for certain analytical arguments. Our main purpose is to show that M̄2(0) should remain defined in some range of
parameters, which we name the regime of interest, that is when m,φ ≪ Λ,Λp. We consider the equation

M̄2 = m2 +
λ

2
φ2 +

λ

2

∫

|Q|<Λ

[

1

Q2 + M̄2
− 1

Q2 +m2
+

M̄2 −m2

(Q2 +m2)2

]

− λ2

2
φ2

∫

|Q|<Λ

[

1

(Q2 + M̄2)2
− 1

(Q2 +m2)2

]

, (56)

obtained from Eq. (52) by performing a mean-field approximation, as in previous sections, for the zero momentum
self-energy and by dropping the last line which contains double integrals. The solution of the completely renormalized
gap equation in the mean-field approximation can be seen in Fig. 11, both without and with the inclusion of the
double integrals. Interestingly, the solution obtained without the inclusion of the double integrals, that is of Eq. (56),
is closer to the solution of the original equation (52). For this reason we find it worthwhile to study this simplified
version of the equation. The latter can be put in the form 0 = hΛ(M̄

2), so that for the first and second derivatives
one has

h′
Λ(M

2) = −1− λ

2

∫

|Q|<Λ

1

(Q2 +M2)2
+

λ

2

∫

|Q|<Λ

1

(Q2 +m2)2
+ λ2φ2

∫

|Q|<Λ

1

(Q2 +M2)3
, (57)

h′′
Λ(M

2) = λ

∫

|Q|<Λ

1

(Q2 +M2)3
− 3λ2φ2

∫

|Q|<Λ

1

(Q2 +M2)4
. (58)

The second derivative of hΛ(M
2) is identical to that of gΛ(M

2) which we discuss in App. C with the only exception
that λ0 is now replaced by λ. Because λ > 0, we conclude then that h′′

Λ(M
2) vanishes only once as M2 varies from 0

to ∞. It is negative for small enough M2, and positive for large enough M2. It follows that h′
Λ(M

2) first decreases
from h′

Λ(0) = ∞ and then increases towards

h′
Λ(∞) = −1 +

λ

2

∫

|Q|<Λ

1

(Q2 +m2)2
. (59)

The rest of the discussion depends on the sign of h′
Λ(∞) and thus on the location of Λ with respect to the Landau

scale Λp:

1. If Λ < Λp, h′
Λ(∞) < 0. Then h′

Λ(M
2) vanishes only once for M2 = M̄2

e (Λ) and hΛ(M
2) increases from

hΛ(0) = −∞ to hΛ(M̄
2
e (Λ)) and then decreases towards hΛ(∞) = −∞. This is a situation that we have already en-

countered: the number of solutions depends on the sign of hΛ(M̄
2
e (Λ)). Now, it is easily checked that hΛ(m

2) = λφ2/2
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and thus hΛ(M̄
2
e (Λ)) ≥ 0. Then, as long as Λ < Λp, there are two solutions (which can be degenerate). We will be

more particularly interested in the right most solution, which we name the “physical solution”, for it is continuously
connected to the unique solution for Λ = 0 and thus corresponds to the solution of the completely renormalized gap
equation that we have plotted in Fig. 11.

2. If Λ = Λp, h
′
Λ(∞) = 0. We can draw the same conclusions as above with the only exception that, for large

enough M2, hΛ(M
2) does not decrease towards −∞ but towards

hΛ(∞) =
λ

2
φ2

[

1 + λ

∫

|Q|<Λp

1

(Q2 +m2)2

]

− λ

2

∫

|Q|<Λp

1

Q2 +m2
=

3λ

2
φ2 − λ

2

∫

|Q|<Λp

1

Q2 +m2
. (60)

Then, if φ2 ≥ φ2
p, with

φ2
p ≡ 1

3

∫

Λp

1

Q2 +m2
, (61)

the physical solution disappears. However in the regime of interest, such that in particular Λp ≫ m, this situation
corresponds to extremely large values of the field, namely φ2 ≥ Λ2

p/48π
2. In contrast, if φ2 < φ2

p, the physical
solution subsists.

3. If Λ > Λp, h
′
Λ(∞) > 0. There are three cases depending on the sign of the minimal value reached by h′

Λ(M
2).

Without trying to be exhaustive let us analyze what happens in the limit Λ → ∞. We have

h′
∞(M2) = −1 +

λ

32π2

[

ln
M2

m2
+

λφ2

M2

]

. (62)

It is easily seen that h′
∞(M2) reaches its minimal value for M2 = λφ2, that is

h′
∞(λφ2) = −1 +

λ

32π2

[

ln
λφ2

m2
+ 1

]

. (63)

If this quantity is positive, h′
∞(M2) > 0 and h∞(M2) increases from −∞ to ∞. There is one solution but it does

not correspond to the physical solution. However, comparing (63) and (53), we observe that this situation occurs
only if λφ2e2 ≥ Λ2

p, that is for extremely large values of the field. In the opposite case, h′
∞(M2) vanishes twice, for

M2 = M̄2
e (∞) andM2 = M̄2

f (∞) and thus h∞(M2) increases from−∞ to h∞(M̄2
e (∞)), then decreases to h∞(M̄2

f (∞))
and finally increases again towards ∞. There can be up to three solutions, the physical one corresponding to the
“second” one. For the later to exist, we must have h∞(M̄2

f (∞)) < 0. We have

h∞(M̄2
f (∞)) = −M̄2

f (∞) +m2 +
λ

2
φ2 +

λ

32π2

[

(M̄2
f (∞) + λφ2) ln

M̄2
f (∞)

m2
− M̄2

f (∞) +m2

]

, (64)

with M̄2
f (∞) the right-most solution of

0 = −1 +
λ

32π2

[

ln
M̄2

f (∞)

m2
+

λφ2

M̄2
f (∞)

]

. (65)

Then, we can also write

h∞(M̄2
f (∞)) = m2

(

1 +
λ

32π2

)

+ λφ2

(

3

2
− λ2

32π2

φ2

M̄2
f (∞)

)

− λM̄2
f (∞)

32π2

(

1 +
λφ2

M̄2
f (∞)

)

. (66)

Now, it is easy to check that M̄2
f (∞) decreases as φ2 increases, from M̄2

f (∞) ∼ Λ2
p/e when φ2 → 0 to 0 as φ2

approaches Λ2
p/λe

2. Thus, in the regime of interest, M̄2
f (∞) is way larger than m2 and φ2 and h∞(M̄2

f (∞)) < 0, as
announced. To summarize, this indicates that in the regime of interest the physical solution can be continued from
Λ < Λp to arbitrary large values of Λ.
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V. CONCLUDING REMARKS

Using a particular example of truncation where the two-point function has a non-trivial momentum and field
dependence, we have revisited the renormalization of Φ-derivable approximations paying particular attention to the
question of the existence of a solution of the gap equation for arbitrarily large values of the cut-off and to the fact
that some of the perturbative divergences which appear when expanding the solution of the gap equation in powers
of the coupling do not appear as divergences at the level of the non-expanded solution. We have shown that it was
nevertheless important to absorb these “perturbative” divergences in order to avoid certain inconvenient features.

Our analysis contributes to clarify the meaning of the renormalization procedure for Φ-derivable approximations
which has been constructed in recent years. It shows in particular that the formal perturbative expansions which
have been used sometimes to construct a renormalization scheme for Φ-derivable approximations are a good guiding
principle, although the corresponding perturbative divergences not always appear as divergences at the level of the
solution of the gap equation. It also points to the fact that approximated renormalization schemes where (at least the
leading) logarithmic sensitivities are not completely eliminated need to be considered with care. All these remarks go
beyond the particular framework of Φ-derivable approximations and probably apply to other resummation methods
such as Schwinger-Dyson equations.

Finally this work is an important step towards the inclusion of finite temperature effects. In fact, once the renormal-
ization has been properly performed at zero temperature, the equations at finite temperature should be automatically
renormalized. We plan to study this truncation at finite temperature in the imaginary time formalism, extending our
approach in [17] and investigate whether or not it leads to a correct order for the phase transition, as it was already
claimed in [19] from numerical results obtained in the real-time formalism.
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Appendix A: General regularization for the 2PI effective action

Consider the following generating functional

Z[J,K] ≡
∫

Dϕ exp
{

− 1
2 ϕ · (G0R)−1 · ϕ+ Sint[ϕ] + J · ϕ+ 1

2 ϕ ·K · ϕ
}

∫

Dϕ exp
{

− 1
2 ϕ · (G0R)−1 · ϕ

} , (A1)

where J ·ϕ ≡
∫

x
J(x)ϕ(x), ϕ ·K ·ϕ ≡

∫

x

∫

y
ϕ(x)K(x, y)ϕ(y) and ϕ ·(G0R)−1 ·ϕ ≡

∫

x

∫

y

∫

z
ϕ(x)G−1

0 (x, y)R−1(y, z)ϕ(z).

For K = 0, the functional Z[J, 0] is regularized due to the presence of the regulator R and the normalization factor
1/
∫

Dϕ exp{− 1
2 ϕ · (G0R)−1 · ϕ}. To see this explicitly, one can consider a perturbative expansion which turns the

evaluation of Z[J, 0] into the evaluation of Gaussian integrals. Wick theorem for Gaussian integrals generates an
overall infinite determinant factor which is precisely canceled by the normalization factor. If follows an expansion of
Z[J, 0] organized in terms of Feynman integrals involving the propagator G0R and thus properly regularized for an
appropriate choice of R. In what follows, we will only consider the functional Z[J,K] in the vicinity of K = 0. For
those “small” values of K, we expect the regularization at K = 0 to be sufficient to regularize Z[J,K] as well.

The 2PI effective action Γ[φ,G] can be seen as the double Legendre transform of Z[J,K] with respect to the sources
J and K. Taking properly into account the presence of a regulator R and a normalization factor, one obtains

Γ[φ,G] =
1

2
φ · (G0R)−1 · φ+

1

2
Tr
[

lnG−1 − ln(G0R)−1 + (G0R)−1 ·G− 1
]

+ Γint[φ,G] , (A2)

where the first two terms can be obtained by switching off all interactions in Eq. (A1) and Γint[φ,G] includes all con-
tributions due to interactions in the form of two-particle irreducible diagrams with propagator G. The full propagator
Ḡ[φ] corresponding to the functional Z[J,K = 0] can be obtained from a variational principle applied to Γ[φ,G] that
is

0 =
δΓ

δG

∣

∣

∣

∣

φ,Ḡ[φ]

. (A3)
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This condition can be written equivalently as

Ḡ−1[φ] = (G0R)−1 + 2
δΓint

δG

∣

∣

∣

∣

φ,Ḡ[φ]

. (A4)

Note that it is a priori not obvious that the expressions (A2) and (A4) are regularized, specially because the regulator
R does not appear explicitly in the Feynman integrals contributing to Γint[φ,G]. In what follows, we address the
question of how the regularization of Z[J,K] appears at the level of Γ[φ,G]. We do so in a simple situation where
the source K(x, y) is translation invariant, allowing us to conveniently work in Fourier space.

It is important to point out that the regularization of Z[J,K] is a priori effective when K is small enough. In terms
of the conjugated variables this means that G is close to Ḡ. The later has a UV asymptotic behavior ∼ G0R, because
except from the momentum independent contributions originating from the tadpole integral, the quantum fluctuations
that contribute to Ḡ are suppressed in the UV by the regulator R. It follows that in the vicinity of Ḡ, which is the
only region where we need to consider the functional Γ[φ,G], the Feynman integrals contributing to Γint[φ,G] are
all regularized. It remains to discuss the trace contribution of Eq. (A2). Note that if one considers each of the
contributions within brackets separately, they are all divergent. However, if we consider all terms simultaneously, we
have

[

lnG−1 − ln(G0R)−1 + (G0R)−1 ·G− 1
]

∼ 1

2
(ΠG0R)2 , (A5)

where we introduced Π ≡ G−1 − (G0R)−1. Because, in the UV, Π receives only contribution from the tadpole
integral, it follows that the trace contribution is convergent for appropriate choices of the regulator R.

In practice, it is convenient to consider the change of variables G → GR. The gap equation then becomes

Ḡ−1[φ] = G−1
0 + 2R

δΓint

δG

∣

∣

∣

∣

φ,Ḡ[φ]R

. (A6)

This is the starting point that we have considered in order to write Eq. (1) with the particular choiceR(Q) = Θ(Λ−|Q|).
Remember finally that the trace contribution in Eq. (A2) does not need regularization if all the terms are combined
before taking the trace. One can however regularize the trace as

Tr R̃
[

lnG−1 − ln(G0R)−1 + (G0R)−1 ·G− 1
]

. (A7)

This is useful for practical purposes because one can thus treat each term of the trace separately. Moreover, the gap
equation (A6) becomes then

R̃ Ḡ−1[φ] = R̃ G−1
0 + 2R

δΓint

δG

∣

∣

∣

∣

φ,Ḡ[φ]R

. (A8)

In particular, the choice R̃ = R shows that the presence of the regulator R in front of the self-energy in Eq. (A6) is
not crucial for the matter of regularization.

Appendix B: Subleading behavior of the bare self-energy

In order to determine the next term in the asymptotic expansion of M̄2(K) at large Λ, we subtract M̃2
∞, in the

form given by Eq. (4), from Eq. (2) with L = 0. We obtain

M̃2(K̃)− M̃2
∞ = m̃2

0 +
λ0

2
φ̃2 +

λ0

2

∫

|Q̃|<1

[

G̃(Q̃)− G̃∞(Q̃)
]

− λ2
0

2
φ̃2

∫

|Q̃|<1

|Q̃−K̃|<1

G̃∞(Q̃)G̃∞(Q̃− K̃) , (B1)

where G̃∞(Q̃) = 1/(Q̃2 + M̃2
∞). Up to order 1/Λ3 contributions, one can write

M̃2(K̃)− M̃2
∞ = m̃2

0 +
λ0

2
φ̃2 − λ0

2

∫

|Q̃|<1

[

M̃2(Q̃)− M̃2
∞

]

G̃2
∞(Q̃)
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− λ2
0

2
φ̃2

∫

|Q̃|<1

|Q̃−K̃|<1

G̃∞(Q̃)G̃∞(Q̃ − K̃) +O
(

1

Λ3

)

. (B2)

Note that the first integral in Eq. (B2) generates an infinite number of 1/Λ2 contributions. To resum them, we bring

this term to the l.h.s. in the form (recall that |K̃| < 1)

∫

|Q̃|<1

[

δ(K̃ − Q̃) +
λ0

2
G̃2

∞(Q̃)

]

(M̃2(Q̃)− M̃2
∞)

= m̃2
0 +

λ0

2
φ̃2 − λ2

0

2
φ̃2

∫

|Q̃|<1

|Q̃−K̃|<1

G̃∞(Q̃)G̃∞(Q̃− K̃) +O
(

1

Λ3

)

. (B3)

The operator that appears in the l.h.s. is invertible since

∫

|K̃|<1

[

δ(L̃− K̃)− λ∞

2
G̃2

∞(K̃)

] [

δ(K̃ − Q̃) +
λ0

2
G̃2

∞(Q)

]

= δ(L̃− Q̃) (B4)

holds if one chooses 1/λ∞ = 1/λ0 + (1/2)
∫

|Q̃|<1 G̃
2
∞(Q̃). Applying the inverse operator on each side of Eq. (B3),

multiplying by Λ2, renaming L̃ = K/Λ and using the fact that K is kept fixed, we end up with Eq. (5).

Appendix C: Mean-field approximation for the mass-renormalized gap equation

Let us here discuss the behavior as Λ increases of the solution of the mean-field equations (31) and (32).

1. Equation for the zero-momentum self-energy

The mean field approximation for the zero momentum self-energy is given by Eq. (33). Note that g0(M
2) =

−M2 +m2 +(λ0/2)φ
2 and thus, for Λ = 0, the equation 0 = g0(M̄

2) admits one solution only: M̄2 = m2 +(λ0/2)φ
2.

In order to discuss the solutions of 0 = gΛ(M̄
2) as one increases Λ from 0 to ∞, we study the profile of the function

gΛ(M
2) as Λ is varied. Note that its first and second derivatives with respect to M2 are given by:

g′Λ(M
2) = −1− λ0

32π2

[

ln
Λ2 +M2

M2
− Λ2

Λ2 +M2

]

+
λ2
0φ

2

32π2

Λ4

M2(Λ2 +M2)2
, (C1)

and

g′′Λ(M
2) =

λ0

32π2

Λ4

M2(Λ2 +M2)2

[

1− λ0φ
2

M2

Λ2 + 3M2

Λ2 +M2

]

. (C2)

It is easily checked that g′′Λ(M
2) changes sign only once. It starts infinitely negative as M2 → 0+, changes sign at

some point and then remains positive, approaching 0 as M2 → ∞. It follows that g′Λ(M
2) decreases from g′Λ(0

+) = ∞
to a certain value and then increases towards g′Λ(∞) = −1. This means that g′Λ(M

2) vanishes and changes sign only
once for some M2 = M̄2

e (Λ). Correspondingly gΛ(M
2) increases from gΛ(0

+) = −∞ to gΛ(M̄
2
e (Λ)) and then decreases

to −∞. The situation seems thus pretty similar to the one concerning the function fΛ(M
2) discussed in the text:

the existence of solutions to the equation 0 = gΛ(M̄
2) depends on the sign of gΛ(M̄

2
e (Λ)). However the discussion

of the sign of gΛ(M̄
2
e (Λ)) is a little bit more involved than that of fΛ(M̄

2
e (Λ)), if we want to do it for each value of

Λ. Fortunately, we are only interested in what happens at higher values of Λ and the discussion becomes again simple.

Consider first the equation

d

dΛ
M̄2

e (Λ) = − 1

g′′Λ

∂g′Λ
∂Λ

= − 1

16π2g′′Λ

Λ3

(Λ2 + M̄2
e (Λ))

2

[

2λ0φ
2

Λ2 + M̄2
e (Λ)

− 1

]

. (C3)

For Λ large enough, the r.h.s. becomes negative. It follows that M̄2
e (Λ) decreases with Λ and thus that M̄2

e (Λ)
converges as Λ → ∞. From the definition 0 = g′Λ(M̄

2
e (Λ)) and the explicit expression (C1), it follows that the only
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possible limit for M̄2
e (Λ) as Λ → ∞ is 0. Then, multiplying the equation 0 = g′Λ(M̄

2
e (Λ)) by M̄2

e (Λ) and taking the
limit Λ → ∞, we obtain M̄2

e (Λ) ln(Λ
2) → λ0φ

2, that is

M̄2
e (Λ) ∼

λ0φ
2

ln Λ2
as Λ → ∞ . (C4)

We can now evaluate gΛ(M̄
2
e (Λ)) from Eq. (33) and study its behavior as Λ → ∞. We obtain

gΛ(M̄
2
e (Λ)) ∼

λ0

32π2
(m2 − λ0φ

2) lnΛ2 , (C5)

if m2 6= λ0φ
2, and

gΛ(M̄
2
e (Λ)) ∼ −λ2

0φ
2

32π2
ln(ln Λ2) , (C6)

if m2 = λ0φ
2. As in the case of fΛ(M̄

2
e (Λ)), the value of gΛ(M̄

2
e (Λ)) at large Λ is driven by the presence of logarithmic

divergences in the equation. But in contrast to fΛ(M̄
2
e (Λ)), the sign of g(M̄2

e (Λ)) at large Λ now depends on the
choice of parameters:

1. If m2 ≤ λ0φ
2, gΛ(M̄

2
e (Λ)) becomes negative above some Λc and the equation 0 = gΛ(M̄

2) has no solution. This
situation is similar to the one of equation 0 = fΛ(M̄

2). The singular behavior |M̄2 − M̄2
c | ∝ (Λc − Λ)1/2 in the

vicinity of Λc is explained as in this later case.

2. If m2 > λ0φ
2, gΛ(M̄

2
e (Λ)) is strictly positive for large values of Λ. This means that the equation 0 = gΛ(M̄

2) has
always two solutions for arbitrary large values of Λ. As we now show, the rightmost solution does not diverge as Λ → ∞.
Rather, it converges to the trivial limit m2 − λ0φ

2. To see this let us evaluate gΛ(M
2) for M2 = (m2 − λ0φ

2)±∆m2

with ∆m2 > 0. Due to the presence of the logarithms

gΛ(m
2 − λ0φ

2 ±∆m2) ∼ ∓ λ0

32π2
∆m2 ln Λ2 . (C7)

It follows that there exists a value of Λ above which gΛ(m
2 − λ0φ

2 − ∆m2) > 0 and gΛ(m
2 − λ0φ

2 + ∆m2) < 0.
This means that, at least for Λ large enough, the rightmost solution M̄ of the equation 0 = gΛ(M̄

2) is such that
|M̄2 − (m2 − λ0φ

2)| < ∆m2. Because ∆m2 can be taken as small as desired, this shows that the rightmost solution
admits a continuum limit: M̄2 → m2 − λ0φ

2. Using this information in Eq. (33), we obtain

M̄2 − (m2 − λ0φ
2) ∼ 1

lnΛ2

(

(λ0 + 48π2)φ2 +m2 ln
m2 − λ0φ

2

m2

)

, (C8)

which shows that the limit is approached very slowly.

2. Momentum dependent equations

We can treat Eq. (32) along similar lines. Notice first that it can be rewritten as 0 = gΛ(M̄
2(K);K, M̄2) with

gΛ(M
2;K, M̄2) ≡ −M2 + M̄2 − λ2

0

2
φ2







∫

|Q|<Λ
|Q+K|<Λ

1

Q2 + M̄2

1

(Q+K)2 +M2
−
∫

|Q|<Λ

1

(Q2 + M̄2)2






. (C9)

The first and second derivatives with respect to M2 read

g′Λ(M
2;K, M̄2) = −1 +

λ2
0

2
φ2

∫

|Q|<Λ
|Q−K|<Λ

1

Q2 + M̄2

1

((Q−K)2 +M2)2
(C10)

g′′Λ(M
2;K, M̄2) = −λ2

0 φ
2

∫

|Q|<Λ
|Q−K|<Λ

1

Q2 + M̄2

1

((Q−K)2 +M2)3
. (C11)
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The second derivative being negative g′Λ(M
2;K, M̄2) decreases strictly with M2 from g′Λ(0;K, M̄2) to g′Λ(∞;K, M̄2) =

−1. If |K| is small enough g′Λ(0;K, M̄2) is positive and gΛ(M
2;K, M̄2) increases first from gΛ(0;K, M̄2) up to a

maximal value and then decreases to gΛ(∞;K, M̄2) = −∞. For larger values of |K|, g′(0;K, M̄2) could be negative
and then gΛ(M

2;K, M̄2) would decrease all the way from g(0;K, M̄2) to gΛ(∞;K, M̄2) = −∞. Notice now that

g(M̄2;K, M̄2) =
λ2
0

2
φ2
[

B(K)−B(0)
]

, (C12)

where B(K) is the bubble integral, defined in the next section, where the mass in the propagators is M̄2. We show
in the next section that B(K) is a monotonously increasing function of |K|. It follows that g(M̄2;K, M̄2) is positive.
Then, because for m2 > λ0φ

2 M̄2 is defined for arbitrary large values of Λ, it follows that Eq. (32) has at least one
solution for arbitrary large values of Λ. Equation (32) is compatible with this solution having a limit as Λ → ∞. This
limit M̄2

∞(K) obeys the equation (35).

Appendix D: About the evaluation of integrals

1. The bubble integral with momentum dependent self-energy

We begin with the main integral appearing throughout this work, the bubble integral defined as

B(K) = −
∫

|Q|<Λ
|Q−K|<Λ

Ḡ(Q)Ḡ(Q−K), (D1)

where Ḡ(Q) = 1/(Q2+M̄2(Q)). Working with a 4D spherical coordinate system in which the angle between the vectors
Q andK is θ, one can do the integrals over the remaining two angles and introduce the variable l2 = q2+k2−2kq cos(θ),
where q = |Q| and k = |K| to write

B(k) = − 1

8π3k2

∫ Λ

0

dq f(q)

∫ min(q+k,Λ)

|q−k|

dl g(l; q, k), (D2)

with f(q) = qḠ(q) and g(l; q, k) = lḠ(l)
√

(l2 − (q − k)2)((q + k)2 − l2). We found that an efficient and robust
way of computing numerically this integral is achieved upon using the change of variables14 l = u(y; q) ≡
1
2 (b(q) + a(q)) + 1

2 (b(q) − a(q)) tanh(π2 sinh(y)), where b(q) = min(q + k,Λ), a(q) = |q − k| followed by q = v(x) ≡
Λ
2

[

1 + tanh
(

π
2 sinh(x)

)]

. After these transformations the bubble integral reads

B(k) = − Λ

32πk2

∫ ∞

−∞

dxJ(x)(b(v(x)) − a(v(x)))f(v(x))

∫ ∞

−∞

dy J(y)g(u(y; v(x)); v(x), k), (D3)

where J(z) = cosh(z)
cosh2(π

2 sinh(z))
. The great advantage is that after these transformations both integrands decays with a

double exponential rate towards both ends of the real axis, and in all practical situations it is enough to integrate
over a relatively narrow compact interval, e.g. [−4, 4], within which the integrands have a maximum. In some cases
the adaptive numerical integration routines of the GNU Scientific Library (GSL) [24] crashed due to the small values
of the functions. In order to avoid this, these integrals were approximated by the integrals of the corresponding
Chebyshev approximated functions in which the Chebyshev coefficients where calculated using a fast cosine transform
routine of the Fastest Fourier Transform in the West (FFTW) library [25]. We varied the number of Chebyshev poly-
nomials between 150 and 350 and checked that the bubble integral is calculated with a relative error smaller than 10−8.

2. The perturbative bubble integral and its monotonous behavior

To compute the bubble integral defined with a propagator containing a momentum independent self-energy, that
is Ḡ(Q) = 1/(Q2 + M̄2), we use the following geometrical picture (see also Fig. 12). With a 4D spherical coordinate

14 First the l-integral is converted into an integral on [−1, 1] and then on the entire real axis through the Tanh-Sinh transformation, which
is commonly used in the so-called Tanh-Sinh quadrature, see for instance [22, 23].
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0 K

DD̄
C

QQ̄

θ
θ̄

FIG. 12: Region of integration for the bubble integral. The dashed circle shows a case in which θ ∈ [0, π], while the dashed arc
corresponds to a case when 0 < θ < arccos α. The remaining part of the plot shows the construction used to prove that the
bubble integral is a monotone increasing function of the momentum.

system we have to integrate over the common region of two spheres15 of radius Λ with distance k ≡ |K| between their
centers. Then, the integral over two angles gives 4π, while, depending on the value of q ≡ |Q|, the remaining angle θ
can go from 0 up to π or to arccos α < π, with α ≡ (k2 + q2 − Λ2)/(2kq) determined by the intersection “point” of
the two spheres. Then, the integral of (D1) reads:

Bpt(k) = − 1

4π3

[

∫ Λ−k

0

dq
q3

q2 + M̄2
T (q, k, M̄,−1) +

∫ Λ

Λ−k

dq
q3

q2 + M̄2
T (q, k, M̄, α)

]

, (D4)

where

T (q, k, M̄, α) ≡
∫ arccos α

0

dθ
sin2 θ

q2 + k2 − 2q k cos θ + M̄2
. (D5)

The θ-integral above can be performed analytically with the change of variable t = tan(θ/2) :

T (q, k, M̄, α) =
8

(q + k)2 + M̄2

∫ tmax

0

dt
t2

(1 + t2)2
1

t2 + a2

=
1

4q2k2

[

2q k
√

1− α2 +
(

q2 + k2 + M̄2
)

arccos α− 2ε+ε− arctan

(

ε+
ε−

√

1− α

1 + α

)]

, (D6)

where we introduced tmax =
1− α

1 + α
, a2 =

(q + k)2 + M̄2

(q − k)2 + M̄2
, and ε± =

√

(q ± k)2 + M̄2. Note that, as special cases one

has

T (q, k, M̄,−1) =
π

4q2k2

[

q2 + k2 + M̄2 − ε+ε−

]

=
2π

(ε+ + ε−)2
,

T (q, k, 0,−1) =
π

2
Max(q, k)−2 . (D7)

Using a purely geometric argument one can prove a useful property of Bpt(K), namely that it increases with |K|.
To do so, one considers the derivative of the bubble integral with respect to K|,

dBpt(K)

d|K| = 2I1(K) + 2I2(K),

15 This region is always nonvanishing if |Q|, |K|, |Q−K| < Λ.
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I1(K) =

∫

|Q|<Λ
|Q−K|<Λ

1

Q2 + M̄2

|K| − |Q| cos θ
((Q−K)2 + M̄2)2

,

I2(K) =

∫

|Q|<Λ

|K| − |Q| cos θ
Q2 + M̄2

δ(Λ2 − (Q−K)2)

(Q −K)2 + M̄2
, (D8)

and prove that it increases. Let us treat first the contribution I1(K). The trick is to decompose the integration domain
{|Q| < Λ}∩{|Q−K| < Λ} in three disjoint domains C, D and D̄, see Fig. 12. The region D is {|Q| < Λ}∩{|Q−K| <
Λ} ∩ {|Q| cos θ > |K|}. The region D̄ is the mirror symmetric of D with respect to the axis |Q| cos θ = |K|. The
region C is {|Q| < Λ}∩ {|Q−K| < Λ}\(D∪ D̄). One has I1 = IC + ID + ID̄. In region C (and also in region D̄), one
has |K| − |Q| cos θ > 0, from which it follows that IC > 0. In order to treat ID and ID̄, for each point Q in region D,
we introduce its mirror symmetrized Q̄ = Q̄(Q). We denote by θ̄ = θ̄(Q) the corresponding angle. It is easily checked
on Fig. 12 that for each Q ∈ D, |K| − |Q̄| cos θ̄ = −(|K| − |Q| cos θ) > 0, |Q −K| = |Q̄ −K| and |Q̄| < |Q|. We can
now write

ID + ID̄ =

∫

Q∈D

|K| − |Q| cos θ
((Q−K)2 + M̄2)2

[

1

Q2 + M̄2
− 1

Q̄2(Q) + M̄2

]

> 0 . (D9)

Next, let us consider the contribution I2, which corresponds to the variation of Bpt(K) due to a change of the
integration domain determined by the intersection of the two spheres (see Fig. 12). One can see geometrically that
when |K| increases, the two spheres separate apart and the volume of the integration domain decreases. Therefore,
the positive value of the integral decreases leading to the increase of Bpt(K). This argument prove the positivity of I2,
which can be checked by a simple calculation. The support of the delta function is contained within the integration

domain if −1 < q2+k2−Λ2

2qk < 1 that is |q − k| < Λ and q + k > Λ. For q, k < Λ the first constraint is clearly satisfied,

so that one has

I2(k) =
1

32π2k2
1

Λ2 + M̄2

∫ Λ

Λ−k

dq q2
Λ2 − q2 + k2

q2 + M̄2
. (D10)

Now, since Λ2 + k2 − q2 is positive at both ends of the q-interval and as a function of q it is strictly decreasing, it
follows that it is positive over the whole interval. This means that I2 is positive, which completes the proof.
We found numerically that this property of the perturbative bubble integral is inherited by the solution M̄(K) of

the self-consistent gap equation containing B(K), which eventually becomes a monotone increasing function of K.

3. The double integrals of Eq. (52)

Next, we discuss the two double integrals appearing in Eq. (52). After shifting the variable of integrationQ → Q−R,
one switches the order of the integrals and uses the method given in (D 2). For the first double integral one obtains

C =

∫

|R|<Λ

Ḡ(R)

∫

|Q|<Λ
|Q−R|<Λ

Ḡ(Q)G2
0(Q −R) = − 1

32π5

∫ Λ

0

dr r3Ḡ(r)

×
[

∫ Λ−r

0

dq q3Ḡ(q)
d

dm2
T (q, r,m,−1) +

∫ Λ

Λ−r

dq q3Ḡ(q)
d

dm2
T (q, r,m, α)

]

, (D11)

where G0(Q) = 1/(Q2 + m2) and α = (r2 + q2 − Λ2)/(2rq) with r ≡ |R| and q ≡ |Q|. Using (D6) and (D7) the
derivatives can be readily done. Then, for the Q-integrals we do a Tanh-Sinh transformation as in (D 1) and evaluate
the integrals numerically. The second double integral involves only the propagator G0 and is defined as

C0 =

∫

|R|<Λ

G0(R)

∫

|Q|<Λ
|Q−R|<Λ

G0(Q)G2
0(Q −R). (D12)

It can be evaluated exactly as C, the Q-integral with α = −1 can be even done analytically.
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We shall denote by Cpt the double integral similar to C, but defined with momentum independent self-energy, that
is with Ḡ(Q) = 1/(Q2+ M̄2). Its divergence can be obtained by studying the divergence of its derivative with respect
to Λ. Changing the order of the integration in the original form of the integral given in (52) one has

dCpt

dΛ
=

∫

|R|<Λ

Ḡ(R)

∫

|Q−R|<Λ

G2
0(Q)Ḡ(Q −R)δ(Λ− |Q|)

+2

∫

|R|<Λ

δ(Λ− |R|)Ḡ(R)

∫

|Q|<Λ
|Q−R|<Λ

G2
0(Q)Ḡ(Q−R) . (D13)

Using in both terms the method leading to (D 2) one obtains

dCpt

dΛ
=

1

32π5

[

Λ3

(Λ2 +m2)2

∫ Λ

0

dr r3Ḡ(r)T (r,Λ, M̄ , α) +
2Λ3

Λ2 + M̄2

∫ Λ

0

dq q3G2
0(q)T (q,Λ, M̄ , β)

]

, (D14)

where α = r/(2Λ) and β = q/(2Λ). Rescaling everything by Λ, one introduces m̃2 = m2/Λ2 and M̃2 = M̄2/Λ2 to
write

dCpt

dΛ
=

1

128π5Λ

[

1

(1 + m̃2)2

∫ 1

0

du
u

u2 + M̃2
f(u; M̃2) +

2

(1 + M̃2)

∫ 1

0

du
u

(u2 + m̃2)2
f(u; M̃2)

]

, (D15)

with

f(u; M̃2) = u
√

4− u2 + (u2 + M̃2 + 1) arccos
(u

2

)

−2

√

(u2 − 1)2 + 2M̃2(u2 + 1) + M̃4 arctan

(

√

2− u

2 + u

√

(u + 1)2 + M̃2

(u − 1)2 + M̃2

)

. (D16)

We are interested in the behavior of the integrals in (D15) at small M̃2 and m̃2, but because for small u one has

f(u; M̃2) ≃ πu2/(1 + M̃2), one can set m̃2 = M̃2 = 0 in the second integral of (D15) only after subtracting from
the integrand its leading contribution at small u, otherwise the integral would diverge in the infrared. Adding and
subtracting this leading contribution and setting m̃2 = M̃2 = 0 whenever it is possible, one finds

dCpt

dΛ
=

1

128π5Λ

{
∫ 1

0

du

u

[

f(u; 0)

(

1 +
2

u2

)

− 2π

]

+ 2π

∫ 1

0

du
u3

(u2 + m̃2)2

}

+O
(

ln Λ

Λ2

)

. (D17)

Using the symbolic manipulation programMathematica the first integral is evaluated to π (!), while the second integral
can be done analytically, and for small m̃ its leading contribution is −

(

1 + ln m̃2
)

/2. Therefore, the divergence of

dCpt/dΛ is given by (1/64π4Λ) ln(Λ/m), which in turn means that the divergence of Cpt is (1/128π4) ln2(Λ/m),
independently on M̄ .

Appendix E: Numerical solution of the gap and flow equations

The numerical algorithm used to solve the gap equation is illustrated on the completely renormalized version of
this equation, that is Eq. (52). It is useful to rewrite this equation in the following form

M̄2(k) = m2 +
λ

2
φ2

(

1 + λB0 −
λ2

2
C0

)

+
λ

2

(

D +
λ2

2
φ2C

)

− λ2

2
φ2B(k), (E1)

where k = |K| and

B0 =

∫

|Q|<Λ

G2
0(Q) =

1

16π2

[

ln

(

Λ2 +m2

m2

)

− Λ2

Λ2 +m2

]

,

D =

∫

|Q|<Λ

(M̄2(Q)−m2)2G2
0(Q)Ḡ(Q) =

1

8π2

∫ Λ

0

dq (M̄2(q)−m2)2q3G2
0(q)Ḡ(q). (E2)
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The integrals B(k), C0, and C are defined in (D1), (D11), and (D12). The function M̄2(k) is stored on a non-

equidistant grid, that is at discrete values of the momentum given by k(j) = km+(Λ− km)
(

j/(N − 1)
)

5
2 , where km is

the modulus of the smallest momentum stored, N is the number of discretization points and j = 0, . . . , N − 1. Note
that the grid was chosen to be finer for small momenta.
To solve the equation iteratively one starts with a constant value for M̄2(k) determined by the terms on the right

hand side of Eq. (E1) which contains the integrals B0 and C0 (they are independent on M̄), then at every new
iteration the integrals D, C, and B(K) are calculated using the stored values of M̄2(K), and at the end the values of
M̄2(K) are upgraded using the right hand side of Eq. (E1). One uses the one-dimensional Akima spline interpolation
method to calculate the value of M̄2(q) at arbitrary momenta, required by the integration routine used to evaluate
the integrals. The numerical evaluation of this integrals was described in Appendix D. At a given value of the cut-off
the number of discretization points used was [100Λ] or [400Λ/3].

We present below the method used to solve the flow equations (11) and (30). Using the notations of subsection D 1
and working for the sake of simplicity with unscaled quantities, the flow equation (30) can be rewritten in the following
form

∫ ∞

0

dq
[

δ(k − q)−H(k, q)
]

θ(Λ− q)∂ΛM̄
2(q) = Z(k), (E3)

where

H(k, q) =
λ2
0φ

2

8π3k2Λ
h(k, q)qḠ2(q) − λ0

16π2
q3Ḡ2(q),

Z(k) = − λ2
0φ

2

4π3k2Λ
z(k) +

λ0AΛ

8π2Λ
. (E4)

Here h(k, q) denotes the l-integral in (D2) and we have also introduced

z(k) =

∫ Λ

0

dq qḠ2(q)M̄2(q)h(k, q), AΛ =

∫ Λ

0

dqq3
[

q2 + 2M̄2(q)

(q2 + M̄2(q))2
− q2 + 2m2

(q2 +m2)2

]

. (E5)

The equation (11) can be written in the same form as (E3), only that in both H(k, q) and Z(k) the second term is
absent. In order to solve Eq. (E3) numerically we store M2(q) on a non-equidistant grid and uses the one-dimensional
Akima spline interpolation method to calculate M2(q) at arbitrary momentum value required by the integration
routine used to evaluate the integrals in (E5). These are the only integrals remaining since upon discretization
Eq. (E3) becomes

N−1
∑

j=0

[

δij −∆iHij

]dM̄2
j

dΛ
= Zi, (E6)

where ∆i denotes the distance between two consecutive momenta on the non-equidistant grid. It is evident
from (E6) that one has to solve a system of N ordinary differential equations (ODE) of the form dM̄2

j /dΛ =

xj(M̄
2
0 , . . . , M̄

2
N−1,Λ), where in order to know xj the linear matrix equation

∑N−1
j=0

[

δij − ∆iHij

]

xj = Zi has to
be solved at every step of the ODE solving algorithm. To solve the ODEs we used the implicit 4th order Runge-Kutta
method, the matrix equation was solved using LU decomposition and the number of discretization points was N = 400
or N = 500 when solving Eq. (30) and N = 175 when solving Eq. (11).

[1] J. M. Luttinger, J. C. Ward, Phys. Rev. 118, 1417 (1960).
[2] G. Baym, Phys. Rev. 127, 1391 (1962).
[3] P. Martin, C. De Dominicis, J. Math. Phys. 5, 14 (1964).
[4] J. M. Cornwall, R. Jackiw and E. Tomboulis, Phys. Rev. D 10, 2428 (1974).
[5] J. P. Blaizot, E. Iancu, A. Rebhan, Phys. Rev. D63, 065003 (2001).
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