59 research outputs found

    Hybrid inorganic-organic, organic charge transfer, and radical based compounds with chalcofulvalene donors and organic acceptors

    Get PDF
    The primary focus of this dissertation is the electrochemical preparation of radical cation salts utilizing the donor o-4,4’-dimethyltetrathiafulvalene (o-Me2TTF) and spherical, tetrahedral, octahedral, bimetallic, cyanometallate, and polyoxometallate anions. Other donors, such as tetramethyl(tetraselenafulvalene) (TMTSF), tetramethyl(tetrathiafulvalene) (TMTTF), bis(ethylenedithio)tetrathiafulvalene (BEDTTTF or ET), and bis(propylenedithio)tetrathiafulvalene (BPDT-TTF or PT) also found use in the preparation of salts in the course of this study. X-ray structural characterization of these salts revealed stacking between donor molecules containing significant S‱‱‱S interactions in the solid state. Various salts were subjected to either conductivity or molecular magnetism measurements in order to determine the level of itinerant electron density and magnetic contribution from paramagnetic charge compensating anions. In order to expand the library of TTF-containing hybrid materials prepared through metathesis, salts of other tetrathiafulvalenium radicals have also been prepared and characterized crystallographically and by select spectroscopic methods. In an effort to gain further information on formation of organic charge transfer complexes, TTF was combined with nitrofluorenone family of acceptors as well as the organocyanide acceptors HAT-(CN)6 (HAT-(CN)6 = 1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) and TCNB (TCNB = 1,2,4,5-tetracyanobenzene). The complexes were characterized using X-ray crystallography, infrared spectroscopy, and molecular magnetism. All of these techniques showed that all compounds underwent little to no charge transfer. Commencing in 2003, the combined work of Dunbar and Omary revealed that systems combining inorganic donors with chelating, sulfur-based ligands and organic acceptors could have their spectroscopic response tuned to display low-energy charge transfer bands extending into the near-IR making them suitable candidates as photosensitizing dyes for semiconductors. In keeping with this idea, new layered charge transfer compounds combining the nitrofluorenone family of acceptors and the inorganic donor Pt(dbbpy)(tdt) (tdt = 3,4-toluenedithiolate) were prepared. The resulting complexes were characterized utilizing X-ray crystallography as well as both spectroscopic and electrochemical methods. Similar analyses were also conducted on various platinum/terpyridine salts and illustrated a level of spectroscopic tunability to that observed for the supramolcular systems composed of inorganic donors and organic acceptors

    Hybrid Material Based on the Lindquist Polyoxometalate [W6O19]2− and the organosulfur donor o-Me2TTF: A Combined Structural and Spectroscopic Study

    No full text
    International audienceThe synthesis, crystal structure and spectroscopic properties of the hybrid radical cation salt containing oxidized o-3,4-dimethyltetrathiafulvalene (o-Me2TTF) and the Lindquist polyoxometalate anion [W6O19]2− are reported. The title salt represents the first time a Lindquist polyoxometalate has been utilized as the counter anion with this unsymmetrical member of the TTF family of derivatives. The salt crystallizes in the triclinic space group P1ÂŻ with a = 7.6211(7) Å, b = 9.5231(9) Å, c = 12.2148(11) Å, α = 105.5870(10)°, ÎČ = 106.8340(10)° and Îł = 95.6950(10)°. Resolution of the solid state structure revealed that the o-Me2TTF radical cations aggregate as isolated face-to-face dimers with intradimer interactions between neighboring sulfur atoms at distances <3.6 Å. Hydrogen bonding was also observed between hydrogen atoms bound to sp 2-hybridized carbon atoms of o-Me2TTF and bridging oxygen atoms of [W6O19]2−. Single crystal IR and Raman spectra were also collected and provide further evidence that the o-Me2TTF donors have been oxidized to their corresponding radical cationic states

    Electron-molecular vibration coupling in (DMtTTF)Br and (o-DMTTF)2[W6O19] salts studied by vibrational spectroscopy

    No full text
    International audienceA novel 1:1 salt encompassing radical cations of DMtTTF (DMtTTF = dimethyltrimethylene-tetrathiafulvalene) and the Br−anion has been synthesized. Close inspection of the salt's solid state structure revealed the presence of quasi-isolated dimers containing DMtTTF radical cations, a specific arrangement whereby the microscopic parameters of DMtTTFradical dot+ might be studied. Analysis of the corresponding single crystal IR and Raman spectra of (DMtTTF)Br allowed us to study the material's electronic and vibrational structure and to evaluate the electron-molecular coupling constants via the isolated dimer model. Additionally, using previously published IR data, analogous calculations were performed on the salt (o-DMTTF)2[W6O19] (o-DMTTF = o-3,4-dimethyltetrathiafulvalene), which also contains well isolated dimers of o-DMTTF radical cations. These calculations revealed that the coupling constants for the unsymmetrical donors studied herein are comparable to those for symmetric TTF derivatives

    1,3-Dithiolan-2-one

    Get PDF

    Magnetic ordering in self-assembled materials consisting of cerium(III) ions and the radical forms of 2,5-TCNQX 2 (X=Cl, Br)

    Get PDF
    Ribbon-like coordination polymers composed of CeIII ions and TCNQX2 (TCNQ=tetracyanoquinodimethane; X=Cl, Br), but not TCNQ radicals, show unexpected magnetic ordering (see picture; Ce green). This behavior reveals remarkable subtlety for magnetic properties of lanthanide–organic materials

    Copper (I) SNS Pincer Complexes: Impact of Ligand Design and Solvent Coordination on Conformer Interconversion from Spectroscopic and Computational Studies

    Get PDF
    The syntheses and detailed characterizations (X-ray crystallography, NMR spectroscopy, cyclic voltammetry, infrared spectroscopy, electrospray mass spectrometry, and elemental analyses) of two new Cu(I) pincer complexes are reported. The pincer ligand coordinates through one nitrogen and two sulfur donor atoms and is based on bis-imidazole or bis-triazole precursors. These tridentate SNS ligands incorporate pyridine and thione-substituted imidazole or triazole functionalities with connecting methylene units that provide flexibility to the ligand backbone and enable high bite-angle binding. Variable temperature 1H NMR analysis of these complexes and of a similar zinc(II) SNS system shows that all are fluxional in solution and permits the determination of ΔGexp‡ and ΔSexp‡. DFT calculations are used to model the fluxionality of these complexes and indicate that a coordinating solvent molecule can promote hemilability of the SNS ligand by lowering the energy barrier involved in the partial rotation of the methylene units

    Cupriphication of gold to sensitize d10–d10 metal–metal bonds and near-unity phosphorescence quantum yields

    Get PDF
    Outer-shell s0/p0 orbital mixing with d10 orbitals and symmetry reductionuponcupriphicationofcyclic trinucleartrigonal-planargold(I) complexes are found to sensitize ground-state Cu(I)–Au(I) covalent bonds and near-unity phosphorescence quantum yields. Heterobimetallic Au4Cu2 {[Au4(ÎŒ-C2,N3-EtIm)4Cu2(ÎŒ-3,5-(CF3)2Pz)2], (4a)}, Au2Cu {[Au2(ÎŒ-C2,N3-BzIm)2Cu(ÎŒ-3,5-(CF3)2Pz)], (1) and [Au2(ÎŒ-C2, N3-MeIm)2Cu(ÎŒ-3,5-(CF3)2Pz)], (3a)}, AuCu2 {[Au(ÎŒ-C2,N3-MeIm)Cu2(ÎŒ3,5-(CF3)2Pz)2], (3b) and [Au(ÎŒ-C2,N3-EtIm)Cu2(ÎŒ-3,5-(CF3)2Pz)2], (4b)} and stacked Au3/Cu3 {[Au(ÎŒ-C2,N3-BzIm)]3[Cu(ÎŒ-3,5-(CF3)2Pz)]3, (2)} formuponreactingAu3 {[Au(ÎŒ-C2,N3-(N-R)Im)]3 ((N-R)Im = imidazolate; R =benzyl/methyl/ethyl =BzIm/MeIm/EtIm)} with Cu3 {[Cu(ÎŒ-3,5(CF3)2Pz)]3 (3,5-(CF3)2Pz = 3,5-bis(trifluoromethyl)pyrazolate)}. The crystal structures of 1 and 3a reveal stair-step infinite chains whereby adjacent dimer-of-trimer units are noncovalently packed via twoAu(I)⋯Cu(I)metallophilicinteractions,whereas 4a exhibitsa hexanuclear cluster structure wherein two monomer-of-trimer units are linked by a genuine d10–d10 polar-covalent bond with ligandunassisted Cu(I)–Au(I) distances of 2.8750(8) Å each—the shortest such an intermolecular distance ever reported between any two d10 centers so as to deem it a “metal–metal bond” vis-Ă -vis “metallophilic interaction.” Density-functional calculations estimate 35– 43kcal/molbindingenergy,akintotypicalM–Msingle-bondenergies. Congruently, FTIR spectra of4a showmultiple far-IR bands within 65– 200 cm−1, assignable to vCu-Au as validated by both the Harvey–Gray method of crystallographic-distance-to-force-constant correlation and dispersive density functional theory computations. Notably, the heterobimetallic complexes herein exhibit photophysical properties that are favorable to those for their homometallic congeners, due to threefold-to-twofold symmetry reduction, resulting in cuprophilicsensitizationinextinctioncoefficientandsolid-state photoluminescence quantum yields approaching unity (ΊPL = 0.90–0.97 vs. 0–0.83 for Au3 and Cu3 precursors), which bodes well for potential future utilization in inorganic and/or organic LED applications

    Synthesis, Characterization, and Computational Study of Three-Coordinate SNS Copper(I) Complexes Based on Bis-Thione Ligand Precursors

    Get PDF
    A series of tridentate pincer ligands, each possessing two sulfur and one nitrogen donor (SNS), based on bis-imidazolyl or bis-triazolyl salts were metallated with CuCl2 to give new tridentate SNS pincer copper(I) complexes [(SNS)Cu]+. These orange complexes exhibit a three-coordinate pseudo-trigonal-planar geometry in copper. During the formation of these copper(I) complexes, disproportionation is observed as the copper(II) salt precursor is converted into the Cu(I) [(SNS)Cu]+ cation and the [CuCl4]2– counteranion. The [(SNS)Cu]+ complexes were characterized with single crystal X-ray diffraction, electrospray mass spectrometry, EPR spectroscopy, attenuated total reflectance infrared spectroscopy, UV–Vis spectroscopy, cyclic voltammetry, and elemental analysis. The EPR spectra are consistent with anisotropic Cu(II) signals with four hyperfine splittings in the lower-field region (g||) and g values consistent with the presence of the tetrachlorocuprate. Various electronic transitions are apparent in the UV–Vis spectra of the complexes and originate in the copper-containing cations and anions. Density functional calculations support the nature of the SNS binding, allowing assignment of a number of features present in the UV–Vis and IR spectra and cyclic voltammograms of these complexes

    Catalytic intramolecular hydroamination of aminoallenes using titanium complexes of chiral, tridentate, dianionic imine-diol ligands

    Get PDF
    Alkylation of D- or L-phenylalanine or valine alkyl esters was carried out using methyl or phenyl Grignard reagents. Subsequent condensation with salicylaldehyde, 3,5-di-tert-butylsalicylaldehyde, or 5-fluorosalicylaldehyde formed tridentate, X_2L type, Schiff base ligands. Chiral shift NMR confirmed retention of stereochemistry during synthesis. X-ray crystal structures of four of the ligands show either inter- or intramolecular hydrogen bonding interactions. The ligands coordinate to the titanium reagents Ti(NMe_2)_4 or TiCl(NMe_2)_3 by protonolysis and displacement of two equivalents of HNMe_2. The crystal structure of one example of Ti(X_2L)Cl(NMe_2) was determined and the complex has a distorted square pyramidal geometry with an axial NMe_2 ligand. The bis-dimethylamide complexes are active catalysts for the ring closing hydroamination of di- and trisubstituted aminoallenes. The reaction of hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives a mixture of 6-ethyl-2,3,4,5-tetrahydropyridine (40–72%) and both Z- and E-2-propenyl-pyrrolidine (25–52%). The ring closing reaction of 6-methyl-hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives exclusively 2-(2-methyl-propenyl)-pyrrolidine. The pyrrolidine products are obtained with enantiomeric excesses up to 17%
    • 

    corecore