Catalytic intramolecular hydroamination of aminoallenes using titanium complexes of chiral, tridentate, dianionic imine-diol ligands

Abstract

Alkylation of D- or L-phenylalanine or valine alkyl esters was carried out using methyl or phenyl Grignard reagents. Subsequent condensation with salicylaldehyde, 3,5-di-tert-butylsalicylaldehyde, or 5-fluorosalicylaldehyde formed tridentate, X_2L type, Schiff base ligands. Chiral shift NMR confirmed retention of stereochemistry during synthesis. X-ray crystal structures of four of the ligands show either inter- or intramolecular hydrogen bonding interactions. The ligands coordinate to the titanium reagents Ti(NMe_2)_4 or TiCl(NMe_2)_3 by protonolysis and displacement of two equivalents of HNMe_2. The crystal structure of one example of Ti(X_2L)Cl(NMe_2) was determined and the complex has a distorted square pyramidal geometry with an axial NMe_2 ligand. The bis-dimethylamide complexes are active catalysts for the ring closing hydroamination of di- and trisubstituted aminoallenes. The reaction of hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives a mixture of 6-ethyl-2,3,4,5-tetrahydropyridine (40–72%) and both Z- and E-2-propenyl-pyrrolidine (25–52%). The ring closing reaction of 6-methyl-hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives exclusively 2-(2-methyl-propenyl)-pyrrolidine. The pyrrolidine products are obtained with enantiomeric excesses up to 17%

    Similar works