organic papers

Structure Reports

Online
ISSN 1600-5368

Eric Reinheimer, John Bacsa* and Kim R. Dunbar

Department of Chemistry, Texas A \& M University, PO Box 30012, College Station, Texas 77842-3012, USA

Correspondence e-mail:
jbacsa@mail.chem.tamu.edu

Key indicators

Single-crystal X-ray study
$T=110 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.020$
$w R$ factor $=0.052$
Data-to-parameter ratio $=15.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

1,3-Dithiolan-2-one

The title compound, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{OS}_{2}$, possesses pseudo-twofold symmetry and consists of a twisted five-membered ring of three C and two S atoms, with a ketone O atom in an equatorial position.

Comment

We report here, for the first time, the crystal and molecular structure of 1,3-dithiolan-2-one, (I). The molecule consists of a five-membered ring of three C and two S atoms, with a ketone O atom in an equatorial position (Fig. 1). Selected geometric parameters are given in Table 1.

(I)

Atoms O1, C1, S1 and S2 are in a distorted trigonal planar arrangement, but atoms C2 and C3 are in slightly distorted tetrahedral environments. The ring is in a twist (T) conformation, less typical of five-membered rings, with puckering parameters $\varphi=127^{\circ}$ and $q=0.431 \AA$ (Cremer \& Pople, 1975). The puckering is best described by twisting the groups on C2 and C3 (Evans \& Boeyens, 1989). The molecule has approximate C_{2} symmetry. In the crystal structure, symmetry-related molecules are held together by very weak hydrogen bonds between the keto O atoms and the methylene H atoms (Fig. 2 and Table 2).

Experimental

The title compound, (I), was prepared by stirring a solution of vinylene trithiocarbonate (3.5 g) and mercuric acetate (19.4 g) in chloroform/acetic acid (3:1 $\mathrm{v} / \mathrm{v}, 100 \mathrm{ml}$) under an atmosphere of N_{2}

Figure 1

View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary radius.

Received 11 June 2004
Accepted 14 June 2004
Online 19 June 2004
for 12 h . The solution was filtered in air through celite and washed with chloroform. The organic phases were refluxed under N_{2} with activated charcoal for 2 h . The solution was filtered and washed with aqueous NaHCO_{3} and dried over MgSO_{4}. The solution was allowed to evaporate and large crystals grew in the solution over a period of 5 d .

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{OS}_{2}$

$M_{r}=120.18$
Monoclinic, $P 2_{1} / c$
$a=8.0397$ (16) \AA
$b=5.2020(10) \AA$
$c=11.318(2) \AA$
$\beta=90.426(4)^{\circ}$
$V=473.31(16) \AA^{3}$
$Z=4$
$D_{x}=1.687 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3398 reflections
$\theta=2.0-27.5^{\circ}$
$\mu=0.96 \mathrm{~mm}^{-1}$
$T=110$ (2) K
Prism, light yellow
$0.28 \times 0.24 \times 0.22 \mathrm{~mm}$
Data collection
Bruker SMART 1K CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\min }=0.775, T_{\max }=0.817$
3916 measured reflections
1078 independent reflections
985 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-10 \rightarrow 10$
$k=-5 \rightarrow 6$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0369 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.56 \mathrm{e}_{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$
$S=1.02$
1078 reflections
71 parameters

Figure 2
Projection of the molecular packing of (I) on the $a c$ plane, showing the hydrogen bonding (dashed lines).

All the H atoms were located in difference electron-density maps and refined isotropically.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: X-SEED (Barbour, 2001) and SHELXTL (Bruker, 2000); software used to prepare material for publication: PLATON (Spek, 2003).

We gratefully acknowledge the service provided by Dr Joseph Reibenspies and the X-ray facility at Texas A\&M University. We thank the National Science Foundation for PI and NIRT grants (CHE-9906583 and DMR-0103455) and for equipment grants for the CCD X-ray equipment (CHE9807975). We thank the Department of Energy for a PI grant (DE-FG03-02ER45999). Support from the Welch Foundation (A-1449) and from a Telecommunications and Informatics Task Force (TITF) Grant from Texas A\&M University is also gratefully acknowledged.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.34). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Evans, D. G. \& Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2004 International Union of Crystallography

