3,216 research outputs found
Heterogeneous nucleation of the primary phase in the rapid solidification of Al-4.5wt%Cu alloy droplet
International audienceThis paper reports on rapid solidification of Al-Cu alloys. A heterogeneous nucleation/growth model coupled with a thermal model of a falling droplet through a stagnant gas was developed. The primary undercooling as well as the number of nucleation points was compared with Al-Cu alloy droplets produced by Impulse Atomization (IA). Based on experimental results from Neutron Diffraction, secondary (eutectic) phases were obtained. Then, primary and secondary undercoolings were estimated using the metastable extensions of solidus and liquidus lines calculated by Thermo-Calc. Moreover, Synchrotron X-ray micro-tomography has been performed on Al-4.5wt%Cu droplets. The undercoolings are in good agreement. Results also evidence the presence of one nucleation point and are in agreement with the experimental observations. 1. Introduction Manufacturing of most metallic alloy products involves solidification at some stage. Mechanical properties of these products are generally related to their solidification microstructures. Depending on the final application of a product, a certain type of microstructure is more appropriate compared to another. For a product that requires directional properties, a microstructure of columnar grains is needed while isotropic properties are satisfied with an equiaxed structure. Generally, post-processing of the solidified materials is required to obtain the final product with desired properties. These post-solidification treatments are generally time-consuming and therefore increase the production cost without fully eliminating solidification related defects such as segregation. Therefore, it is important to understand all the dynamics involved in the formation of solidification microstructures in order to control the properties of the final products. As dendrites growth from an undercooled melt depends a great deal on the nucleation undercooling. Therefore, determination of undercooling and the resulting growth rate, recalescence, microsegregation/phase fraction and grain size is very important. Al-Cu alloys (4.5, 5, 10 and 17 wt% Cu) have been produced by IA and the last three compositions were analysed in our previous papers [1, 2]. IA is a single fluid atomization technique that is capable of producing droplets of controlled size having a relatively narrow distribution and a predictable cooling rate. The alloys (350 to 450g) were melted in a graphite crucible by means of an induction furnace and atomized at 850ºC in an almost oxygen free chamber (10ppm) under Nitrogen, Helium or Argon atmospheres. The atomized droplets rapidly solidify during their fall by losing heat to th
Development of an Approach for the Holistic Assessment of Innovation Projects in Manufacturing Including Potential, Effort, and Risk Using a Systematic Literature Review and Expert Interviews
Manufacturing companies face severe challenges from rapid technological developments. Industry 5.0 indicates the need for a sustainable, human-centered, and resilient industry. In striving for transformation, innovation becomes critical. However, a careful allocation of resources implies the evaluation of innovation projects. Moreover, diverse types of innovation and limited amounts of information represent a significant challenge. Therefore, this contribution presents an approach for holistically assessing innovation in manufacturing. First, a systematic literature review (SLR) was conducted to frame the current research state and identify assessment criteria. Second, a multiple-attribute decision-making method (MADM) was developed using the findings of the SLR and expert interviews. Finally, the criteria and the assessment approach were verified and validated by expert interviews, a workshop, and an industrial use case application. As the main findings, three criteria groups were derived and detailed: potentials, efforts, and risks. These criteria groups were used in a MADM approach incorporating Fuzzy set theory within a hybrid technique, combining the Analytical Hierarchical Process with the Technique for Order Preference by Similarity to Ideal Solutions. In conclusion, an enhancement of innovation assessment in manufacturing was achieved through the integration of different criteria and the balance between complexity and industrial applicability
Political institutions and debt crises
This paper shows that political institutions matter in explaining defaults on external and domestic debt obligations. We explore a large number of political and macroeconomic variables using a non-parametric technique to predict safety from default. The advantage of this technique is that it is able to identify patterns in the data that are not captured in standard probit analysis. We find that political factors matter, and do so in different ways for democratic and non-democratic regimes, and for domestic and external debt. In democracies, a parliamentary system or sufficient checks and balances almost guarantee the absence of default on external debt when economic fundamentals or liquidity are sufficiently strong. In dictatorships, high stability and tenure play a similar role for default on domestic debt
The European sea bass <i>Dicentrarchus labrax</i> genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing
BackgroundFood supply from the ocean is constrained by the shortage of domesticated and selected fish. Development of genomic models of economically important fishes should assist with the removal of this bottleneck. European sea bass Dicentrarchus labrax L. (Moronidae, Perciformes, Teleostei) is one of the most important fishes in European marine aquaculture; growing genomic resources put it on its way to serve as an economic model.ResultsEnd sequencing of a sea bass genomic BAC-library enabled the comparative mapping of the sea bass genome using the three-spined stickleback Gasterosteus aculeatus genome as a reference. BAC-end sequences (102,690) were aligned to the stickleback genome. The number of mappable BACs was improved using a two-fold coverage WGS dataset of sea bass resulting in a comparative BAC-map covering 87% of stickleback chromosomes with 588 BAC-contigs. The minimum size of 83 contigs covering 50% of the reference was 1.2 Mbp; the largest BAC-contig comprised 8.86 Mbp. More than 22,000 BAC-clones aligned with both ends to the reference genome. Intra-chromosomal rearrangements between sea bass and stickleback were identified. Size distributions of mapped BACs were used to calculate that the genome of sea bass may be only 1.3 fold larger than the 460 Mbp stickleback genome.ConclusionsThe BAC map is used for sequencing single BACs or BAC-pools covering defined genomic entities by second generation sequencing technologies. Together with the WGS dataset it initiates a sea bass genome sequencing project. This will allow the quantification of polymorphisms through resequencing, which is important for selecting highly performing domesticated fish
Limb activation ameliorates body-related deficits in spatial neglect
Many neglect patients show deficits in the mental representation of their contralesional body side or body parts, termed personal neglect. These deficits include impairments in identifying body parts on schematic drawings of human bodies. Limb activation and alertness cues have been shown to modulate neglect transiently, and are effective treatments for several symptoms of the neglect syndrome. Here, we tested on eight patients with right-hemispheric stroke and left-sided spatial neglect whether these two techniques modulate deficits in the mental representation of hands, assessed with a hand-test in which the subjects had to decide whether a depicted schematic hand belongs to the left or right side of the human body. The results showed that neglect patients made marginally significant (p = 0.065) more errors in left-hand-decisions than right-hand-decisions, indicating a neglect-specific disorder. Moreover, we found that left-sided limb activation but not non-lateralized alertness cueing (a loud noise immediately before patients made their perceptual decision) significantly reduced misidentifications for depicted left hands as compared to baseline. No effect of any intervention was observed on error rates for depicted right hands. We conclude that the amelioration of the performance in the hand task is modulated by the activation of the body schema or other body representations through left-sided limb activation
Modified differentials and basic cohomology for Riemannian foliations
We define a new version of the exterior derivative on the basic forms of a
Riemannian foliation to obtain a new form of basic cohomology that satisfies
Poincar\'e duality in the transversally orientable case. We use this twisted
basic cohomology to show relationships between curvature, tautness, and
vanishing of the basic Euler characteristic and basic signature.Comment: 20 pages, references added, minor corrections mad
On the classification of type D spacetimes
We give a classification of the type D spacetimes based on the invariant
differential properties of the Weyl principal structure. Our classification is
established using tensorial invariants of the Weyl tensor and, consequently,
besides its intrinsic nature, it is valid for the whole set of the type D
metrics and it applies on both, vacuum and non-vacuum solutions. We consider
the Cotton-zero type D metrics and we study the classes that are compatible
with this condition. The subfamily of spacetimes with constant argument of the
Weyl eigenvalue is analyzed in more detail by offering a canonical expression
for the metric tensor and by giving a generalization of some results about the
non-existence of purely magnetic solutions. The usefulness of these results is
illustrated in characterizing and classifying a family of Einstein-Maxwell
solutions. Our approach permits us to give intrinsic and explicit conditions
that label every metric, obtaining in this way an operational algorithm to
detect them. In particular a characterization of the Reissner-Nordstr\"{o}m
metric is accomplished.Comment: 29 pages, 0 figure
Cohomological tautness for Riemannian foliations
In this paper we present some new results on the tautness of Riemannian
foliations in their historical context. The first part of the paper gives a
short history of the problem. For a closed manifold, the tautness of a
Riemannian foliation can be characterized cohomologically. We extend this
cohomological characterization to a class of foliations which includes the
foliated strata of any singular Riemannian foliation of a closed manifold
Probing the dynamics of quasicrystal growth using synchrotron live imaging
The dynamics of quasicrystal growth remains an unsolved problem in condensed
matter. By means of synchrotron live imaging, facetted growth proceeding by the
tangential motion of ledges at the solid-melt interface is clearly evidenced
all along the solidification of icosahedral AlPdMn quasicrystals. The effect of
interface kinetics is significant so that nucleation and free growth of new
facetted grains occur in the melt when the solidification rate is increased.
The evolution of these grains is explained in details, which reveals the
crucial role of aluminum rejection, both in the poisoning of grain growth and
driving fluid flow
Lighting preferences in individual offices
Abstract Workplaces with good daylighting offer visual comfort to users, give them a series of physiological and psychological benefits and allow good performance of visual activities, besides saving energy. However, this solution is not always adopted: lighting type preferences involve many variables besides the availability of daylight. This paper explores a case study through the analysis of questionnaire answers and computer simulations of a series of metrics related to quality of lighting with the aim of finding explanations for the lighting preferences of individual office users. The results show that, although the offices present good daylighting conditions and no glare potential, and users are satisfied with daylighting, these parameters are not sufficient to explain the predominant lighting preferences. The findings have also shown that there is no consensus about which parameters potentially cause visual comfort, while the parameters that cause discomfort are clearly identified. In addition, in this study, 49% of the preference for mixed lighting (daylight plus electrical light) can be explained by the fact that mixed lighting produces better modeling than daylighting alone
- …