538 research outputs found

    Electrostatic protection of the Solar Power Satellite and rectenna

    Get PDF
    Several features of the interactions of the solar power satellite (SPS) with its space environment were examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets were calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low-Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self-consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Magnetic shielding of the satellite, to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment is considered. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. The SPS design employed in this study is the 1978 MSFC baseline design utilizing GaAs solar cells at CR-2 and an aluminum structure

    Incidence of Huanglongbing on several sweet orange cultivars budded onto different rootstocks at the Citrus Experimental Station (EECB), Bebedouro, São Paulo, Brazil.

    Get PDF
    Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus and Ca. L. americanus and vectored by Diaphorina citri Kuwayama, was first reported in 2004 in Brazil and it is currently widespread in São Paulo State (Belasque et al., 2010). The EECB, in partnership with Embrapa Cassava & Fruits, conducts a citrus improvement program aimed to select scion and rootstock Citrus cultivars mainly focused on the resistance or tolerance to biotic and abiotic stresses

    Dynamic masses for the close PG1159 binary SDSSJ212531.92-010745.9

    Full text link
    SDSSJ212531.92-010745.9 is the first known PG1159 star in a close binary with a late main sequence companion allowing a dynamical mass determination. The system shows flux variations with a peak-to-peak amplitude of about 0.7 mag and a period of about 6.96h. In August 2007, 13 spectra of SDSSJ212531.92-010745.9 covering the full orbital phase range were taken at the TWIN 3.5m telescope at the Calar Alto Observatory (Alm\'{e}ria, Spain). These confirm the typical PG1159 features seen in the SDSS discovery spectrum, together with the Balmer series of hydrogen in emission (plus other emission lines), interpreted as signature of the companion's irradiated side. A radial velocity curve was obtained for both components. Using co-added radial-velocity-corrected spectra, the spectral analysis of the PG1159 star is being refined. The system's lightcurve, obtained during three seasons of photometry with the G\"ottingen 50cm and T\"ubingen 80cm telescopes, was fitted with both the NIGHTFALL and PHOEBE binary simulation programs. An accurate mass determination of the PG1159 component from the radial velocity measurements requires to first derive the inclination, which requires light curve modelling and yields further constraints on radii, effective temperature and separation of the system's components. From the analysis of all data available so far, we present the possible mass range for the PG1159 component of SDSSJ212531.92-010745.9.Comment: 8 pages, in "White dwarfs", proceedings of the 16th European White Dwarf Workshop, eds. E. Garcia-Berro, M. Hernanz, J. Isern, S. Torres, to be published in J. Phys.: Conf. Se

    Local management and landscape composition affect predatory mites in European wine-growing regions

    Get PDF
    Sustainable land use in agricultural landscapes is essential to counteract the global decline of biodiversity, as well to ensure ecosystem services like natural pest control. Phytoseiid mites are key natural enemies of pest mites in vineyards but how local management and landscape context affect phytoseiid mites remains poorly known. In this study, we examined the effects of farming systems, inter-row management and landscape composition on phytoseiid mite communities in 156 vineyards across five European wine-growing regions. Our results showed that phytoseiid communities were mainly dominated by one or two phytoseiid species across Europe and that local management was a major factor affecting population densities. According to the wine-growing regions, phytoseiid mite densities benefited from integrated pest management or conventional farming compared to organic farming and from spontaneous vegetation cover compared to seeded cover crops. Moreover, mite densities benefited from increasing proportions of vineyards at the landscape scale. The farming systems effects were most likely related to the positive impact of the lower pesticide use in integrated and conventional vineyards. The positive effect of spontaneous vegetation cover could be related to a better supply of nutritive pollen as food resource compared to seeded cover crops, which depends on the plant species in the inter-row. Our findings indicated accordingly that a reduced pesticide use, and inter-row management are crucial factors for promoting pest control by predatory mites in European vineyards. Moreover, the proportion of viticultural area in the landscape is a considerable factor to retain stable phytoseiid mite populations.This research was funded by the research project SECBIVIT, which was funded through the 2017-2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND program, with the funding organizations: Agencia Estatal de Investigación (Ministerio de ciencia e innovación/ES/Grant #10.13039/501100011033), Austrian Science Fund (AT/Grant #I 4025-B32), Federal Ministry of Education and Research and Projektträger VDI/VDE Innovation + Technik GmbH (DE), French National Research Agency (FR), Netherlands Organisation for Scientific Research (NL), National Science Foundation (US/Grant #1850943) and Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding (RO)

    Multispacecraft observations and modeling of the 22/23 June 2015 geomagnetic storm

    Get PDF
    The magnetic storm of 22–23 June 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field‐aligned currents from AMPERE (Active Magnetosphere and Planetary Electrodynamics Response), and ionospheric flow data from Defense Meteorological Satellite Program (DMSP). Our real‐time space weather alert system sent out a “red alert,” correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS Fast Plasma Instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20 MA. We present numerical simulations with the Block Adaptive Tree‐Solarwind ‐ Roe ‐ Upwind Scheme (BATS‐R‐US) global magnetohydrodynamic model linked with the Rice Convection Model. The model predicted the magnitude of the dipolarizations, and varying polar cap convection patterns, which were confirmed by DMSP measurements.Key PointsMHD models can reproduce well the dipolarizations seen at MMS and VAP. Space weather forecasting can predict Kp variations within 0.5 stepBeams of O+ flowing downstream appear to cross the separatrix and become a second energized population of the tail plasma sheetMHD models successfully reproduced the polar cap convection patterns and cross‐polar cap potential drops for a range of IMF conditionsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134114/1/grl54522_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134114/2/grl54522-sup-0002-FigureS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134114/3/grl54522.pd

    Convection and electrodynamic signatures in the vicinity of a Sun-aligned arc: Results from the Polar Acceleration Regions and Convection Study (Polar ARCS)

    Get PDF
    An experimental campaign designed to study high-latitude auroral arcs was conducted in Sondre Stromfjord, Greenland, on February 26, 1987. The Polar Acceleration Regions and Convection Study (Polar ARCS) consisted of a coordinated set of ground-based, airborne, and sounding rocket measurements of a weak, sun-aligned arc system within the duskside polar cap. A rocket-borne barium release experiment, two DMSP satellite overflights, all-sky photography, and incoherent scatter radar measurements provided information on the large-scale plasma convection over the polar cap region while a second rocket instrumented with a DC magnetometer, Langmuir and electric field probes, and an electron spectrometer provided measurements of small-scale electrodynamics. The large-scale data indicate that small, sun-aligned precipitation events formed within a region of antisunward convection between the duskside auroral oval and a large sun-aligned arc further poleward. This convection signature, used to assess the relationship of the sun-aligned arc to the large-scale magnetospheric configuration, is found to be consistent with either a model in which the arc formed on open field lines on the dusk side of a bifurcated polar cap or on closed field lines threading an expanded low-latitude boundary layer, but not a model in which the polar cap arc field lines map to an expanded plasma sheet. The antisunward convection signature may also be explained by a model in which the polar cap arc formed on long field lines recently reconnected through a highly skewed plasma sheet. The small-scale measurements indicate the rocket passed through three narrow (less than 20 km) regions of low-energy (less than 100 eV) electron precipitation in which the electric and magnetic field perturbations were well correlated. These precipitation events are shown to be associated with regions of downward Poynting flux and small-scale upward and downward field-aligned currents of 1-2 micro-A/sq m. The paired field-aligned currents are associated with velocity shears (higher and lower speed streams) embedded in the region of antisunward flow

    Angioplasty in asymptomatic carotid artery stenosis vs. endarterectomy compared to best medical treatment: One-year interim results of SPACE-2

    Get PDF
    BACKGROUND Treatment of individuals with asymptomatic carotid artery stenosis is still handled controversially. Recommendations for treatment of asymptomatic carotid stenosis with carotid endarterectomy (CEA) are based on trials having recruited patients more than 15 years ago. Registry data indicate that advances in best medical treatment (BMT) may lead to a markedly decreasing risk of stroke in asymptomatic carotid stenosis. The aim of the SPACE-2 trial (ISRCTN78592017) was to compare the stroke preventive effects of BMT alone with that of BMT in combination with CEA or carotid artery stenting (CAS), respectively, in patients with asymptomatic carotid artery stenosis of \geq70% European Carotid Surgery Trial (ECST) criteria. METHODS SPACE-2 is a randomized, controlled, multicenter, open study. A major secondary endpoint was the cumulative rate of any stroke (ischemic or hemorrhagic) or death from any cause within 30 days plus an ipsilateral ischemic stroke within one year of follow-up. Safety was assessed as the rate of any stroke and death from any cause within 30 days after CEA or CAS. Protocol changes had to be implemented. The results on the one-year period after treatment are reported. FINDINGS It was planned to enroll 3550 patients. Due to low recruitment, the enrollment of patients was stopped prematurely after randomization of 513 patients in 36 centers to CEA (n = 203), CAS (n = 197), or BMT (n = 113). The one-year rate of the major secondary endpoint did not significantly differ between groups (CEA 2.5%, CAS 3.0%, BMT 0.9%; p = 0.530) as well as rates of any stroke (CEA 3.9%, CAS 4.1%, BMT 0.9%; p = 0.256) and all-cause mortality (CEA 2.5%, CAS 1.0%, BMT 3.5%; p = 0.304). About half of all strokes occurred in the peri-interventional period. Higher albeit statistically non-significant rates of restenosis occurred in the stenting group (CEA 2.0% vs. CAS 5.6%; p = 0.068) without evidence of increased stroke rates. INTERPRETATION The low sample size of this prematurely stopped trial of 513 patients implies that its power is not sufficient to show that CEA or CAS is superior to a modern medical therapy (BMT) in the primary prevention of ischemic stroke in patients with an asymptomatic carotid stenosis up to one year after treatment. Also, no evidence for differences in safety between CAS and CEA during the first year after treatment could be derived. Follow-up will be performed up to five years. Data may be used for pooled analysis with ongoing trials

    Effect of Alemtuzumab (CAMPATH 1-H) in patients with inclusion-body myositis

    Get PDF
    Sporadic inclusion-body myositis (sIBM) is the most common disabling, adult-onset, inflammatory myopathy histologically characterized by intense inflammation and vacuolar degeneration. In spite of T cell-mediated cytotoxicity and persistent, clonally expanded and antigen-driven endomysial T cells, the disease is resistant to immunotherapies. Alemtuzumab is a humanized monoclonal antibody that causes an immediate depletion or severe reduction of peripheral blood lymphocytes, lasting at least 6 months. We designed a proof-of-principle study to examine if one series of Alemtuzumab infusions in sIBM patients depletes not only peripheral blood lymphocytes but also endomysial T cells and alters the natural course of the disease. Thirteen sIBM patients with established 12-month natural history data received 0.3 mg/kg/day Alemtuzumab for 4 days. The study was powered to capture ≥10% increase strength 6 months after treatment. The primary end-point was disease stabilization compared to natural history, assessed by bi-monthly Quantitative Muscle Strength Testing and Medical Research Council strength measurements. Lymphocytes and T cell subsets were monitored concurrently in the blood and the repeated muscle biopsies. Alterations in the mRNA expression of inflammatory, stressor and degeneration-associated molecules were examined in the repeated biopsies. During a 12-month observation period, the patients’ total strength had declined by a mean of 14.9% based on Quantitative Muscle Strength Testing. Six months after therapy, the overall decline was only 1.9% (P < 0.002), corresponding to a 13% differential gain. Among those patients, four improved by a mean of 10% and six reported improved performance of daily activities. The benefit was more evident by the Medical Research Council scales, which demonstrated a decline in the total scores by 13.8% during the observation period but an improvement by 11.4% (P < 0.001) after 6 months, reaching the level of strength recorded 12 months earlier. Depletion of peripheral blood lymphocytes, including the naive and memory CD8+ cells, was noted 2 weeks after treatment and persisted up to 6 months. The effector CD45RA+CD62L­ cells, however, started to increase 2 months after therapy and peaked by the 4th month. Repeated muscle biopsies showed reduction of CD3 lymphocytes by a mean of 50% (P < 0.008), most prominent in the improved patients, and reduced mRNA expression of stressor molecules Fas, Mip-1a and αB-crystallin; the mRNA of desmin, a regeneration-associated molecule, increased. This proof-of-principle study provides insights into the pathogenesis of inclusion-body myositis and concludes that in sIBM one series of Alemtuzumab infusions can slow down disease progression up to 6 months, improve the strength of some patients, and reduce endomysial inflammation and stressor molecules. These encouraging results, the first in sIBM, warrant a future study with repeated infusions (Clinical Trials. Gov NCT00079768)
    corecore