1,448 research outputs found
Anisotropic Bose-Einstein condensates and completely integrable dynamical systems
A Gaussian ansatz for the wave function of two-dimensional harmonically
trapped anisotropic Bose-Einstein condensates is shown to lead, via a
variational procedure, to a coupled system of two second-order, nonlinear
ordinary differential equations. This dynamical system is shown to be in the
general class of Ermakov systems. Complete integrability of the resulting
Ermakov system is proven. Using the exact solution, collapse of the condensate
is analyzed in detail. Time-dependence of the trapping potential is allowed
Inter-rater reliability of the EPUAP pressure ulcer classification system using photographs
Background. Many classification systems for grading pressure ulcers are discussed in the literature. Correct identification and classification of a pressure ulcer is important for accurate reporting of the magnitude of the problem, and for timely prevention. The reliability of pressure ulcer classification systems has rarely been tested. Aims and objectives. The purpose of this paper is to examine the inter-rater reliability of classifying pressure ulcers according to the European Pressure Ulcer Advisory Panel classification system when using pressure ulcer photographs.Design. Survey was among pressure ulcer experts.Methods. Fifty-six photographs were presented to 44 pressure ulcer experts. The experts classified the lesions as normal skin, blanchable erythema, pressure ulcer (four grades) or incontinence lesion. Inter-rater reliability was calculated.Results. The multirater-Kappa for the entire group of experts was 0.80 (P < 0.001).Various groups of experts obtained comparable results. Differences in classifications are mainly limited to 1 degree of difference. Incontinence lesions are most often confused with grade 2 (blisters) and grade 3 pressure ulcers (superficial pressure ulcers).Conclusions. The inter-rater reliability of the European Pressure Ulcer Advisory Panel classification appears to be good for the assessment of photographs by experts. The difference between an incontinence lesion and a blister or a superficial pressure ulcer does not always seem clear.Relevance to clinical practice. The ability to determine correctly whether a lesion is a pressure ulcer lesion is important to assess the effectiveness of preventive measures. In addition, the ability to make a correct distinction between pressure ulcers and incontinence lesions is important as they require different preventive measures. A faulty classification leads to mistaken measures and negative results. Photographs can be used as a practice instrument to learn to discern pressure ulcers from incontinence lesions and to get to know the different grades of pressure ulcers. The Pressure Ulcer Classification software package has been developed to facilitate learning
Unitary relation between a harmonic oscillator of time-dependent frequency and a simple harmonic oscillator with and without an inverse-square potential
The unitary operator which transforms a harmonic oscillator system of
time-dependent frequency into that of a simple harmonic oscillator of different
time-scale is found, with and without an inverse-square potential. It is shown
that for both cases, this operator can be used in finding complete sets of wave
functions of a generalized harmonic oscillator system from the well-known sets
of the simple harmonic oscillator. Exact invariants of the time-dependent
systems can also be obtained from the constant Hamiltonians of unit mass and
frequency by making use of this unitary transformation. The geometric phases
for the wave functions of a generalized harmonic oscillator with an
inverse-square potential are given.Comment: Phys. Rev. A (Brief Report), in pres
Mass-luminosity relation for FGK main sequence stars: metallicity and age contributions
The stellar mass-luminosity relation (MLR) is one of the most famous
empirical "laws", discovered in the beginning of the 20th century. MLR is still
used to estimate stellar masses for nearby stars, particularly for those that
are not binary systems, hence the mass cannot be derived directly from the
observations. It's well known that the MLR has a statistical dispersion which
cannot be explained exclusively due to the observational errors in luminosity
(or mass). It is an intrinsic dispersion caused by the differences in age and
chemical composition from star to star. In this work we discuss the impact of
age and metallicity on the MLR. Using the recent data on mass, luminosity,
metallicity, and age for 26 FGK stars (all members of binary systems, with
observational mass-errors <= 3%), including the Sun, we derive the MLR taking
into account, separately, mass-luminosity, mass-luminosity-metallicity, and
mass-luminosity-metallicity-age. Our results show that the inclusion of age and
metallicity in the MLR, for FGK stars, improves the individual mass estimation
by 5% to 15%.Comment: 7 pages, 4 figures, 1 table, accepted in Astrophysics and Space
Scienc
Robust Neutrino Constraints by Combining Low Redshift Observations with the CMB
We illustrate how recently improved low-redshift cosmological measurements
can tighten constraints on neutrino properties. In particular we examine the
impact of the assumed cosmological model on the constraints. We first consider
the new HST H0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the
sigma8*(Omegam/0.25)^0.41 = 0.832 +/- 0.033 constraint from Rozo et al. (2009)
derived from the SDSS maxBCG Cluster Catalog. In a Lambda CDM model and when
combined with WMAP5 constraints, these low-redshift measurements constrain sum
mnu<0.4 eV at the 95% confidence level. This bound does not relax when allowing
for the running of the spectral index or for primordial tensor perturbations.
When adding also Supernovae and BAO constraints, we obtain a 95% upper limit of
sum mnu<0.3 eV. We test the sensitivity of the neutrino mass constraint to the
assumed expansion history by both allowing a dark energy equation of state
parameter w to vary, and by studying a model with coupling between dark energy
and dark matter, which allows for variation in w, Omegak, and dark coupling
strength xi. When combining CMB, H0, and the SDSS LRG halo power spectrum from
Reid et al. 2009, we find that in this very general model, sum mnu < 0.51 eV
with 95% confidence. If we allow the number of relativistic species Nrel to
vary in a Lambda CDM model with sum mnu = 0, we find Nrel =
3.76^{+0.63}_{-0.68} (^{+1.38}_{-1.21}) for the 68% and 95% confidence
intervals. We also report prior-independent constraints, which are in excellent
agreement with the Bayesian constraints.Comment: 19 pages, 6 figures, submitted to JCAP; v2: accepted version. Added
section on profile likelihood for Nrel, improved plot
Effect of in-hospital delays on surgical mortality for emergency general surgery conditions at a tertiary hospital in Malawi
Background: In sub-Saharan Africa, surgical access is limited by an inadequate surgical workforce, lack of infrastructure and decreased care-seeking by patients. Delays in treatment can result from delayed presentation (pre-hospital), delays in transfer (intrafacility) or after arrival at the treating centre (in-hospital delay; IHD). This study evaluated the effect of IHD on mortality among patients undergoing emergency general surgery and identified factors associated with IHD. Methods: Utilizing Malawi's Kamuzu Central Hospital Emergency General Surgery database, data were collected prospectively from September 2013 to November 2017. Included patients had a diagnosis considered to warrant urgent or emergency intervention for surgery. Bivariable analysis and Poisson regression modelling was done to determine the effect of IHD (more than 24 h) on mortality, and identify factors associated with IHD. Results: Of 764 included patients, 281 (36·8 per cent) had IHDs. After adjustment, IHD (relative risk (RR) 1·68, 95 per cent c.i. 1·01 to 2·78; P = 0·045), generalized peritonitis (RR 4·49, 1·69 to 11·95; P = 0·005) and gastrointestinal perforation (RR 3·73, 1·25 to 11·08; P = 0·018) were associated with a higher risk of mortality. Female sex (RR 1·33, 1·08 to 1·64; P = 0·007), obtaining any laboratory results (RR 1·58, 1·29 to 1·94; P < 0·001) and night-time admission (RR 1·59, 1·32 to 1·90; P < 0·001) were associated with an increased risk of IHD after adjustment. Conclusion: IHDs were associated with increased mortality. Increased staffing levels and operating room availability at tertiary hospitals, especially at night, are needed
Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures
We calculate the rate for thermal production of axions and saxions via
scattering of quarks, gluons, squarks, and gluinos in the primordial
supersymmetric plasma. Systematic field theoretical methods such as hard
thermal loop resummation are applied to obtain a finite result in a
gauge-invariant way that is consistent to leading order in the strong gauge
coupling. We calculate the thermally produced yield and the decoupling
temperature for both axions and saxions. For the generic case in which saxion
decays into axions are possible, the emitted axions can constitute extra
radiation already prior to big bang nucleosynthesis and well thereafter. We
update associated limits imposed by recent studies of the primordial helium-4
abundance and by precision cosmology of the cosmic microwave background and
large scale structure. We show that the trend towards extra radiation seen in
those studies can be explained by late decays of thermal saxions into axions
and that upcoming Planck results will probe supersymmetric axion models with
unprecedented sensitivity.Comment: 16 pages, 7 figures; v2: references added, minor clarifying
additions, matches published versio
Getting Better Hospital Alarm Sounds Into a Global Standard
The reserved set of audible alarm signals embodied within the global medical device safety standard, IEC 60601-1-8, is known to be problematic and in need of updating. The current alarm signals are not only suboptimal, but there is also little evidence beyond learnability (which is known to be poor) that demonstrates their performance in realistic and representative clinical environments. In this article, we describe the process of first designing and then testing potential replacement audible alarm signals for IEC 60601-1-8, starting with the design of several sets of candidate sounds and initial tests on learnability and localizability, followed by testing in simulated clinical environments. We demonstrate that in all tests, the alarm signals selected for further development significantly outperform the current alarm signals. We describe the process of collecting considerably more data on the performance of the new sounds than exists for the current sounds, which ultimately will be of use to end users. We also reflect on the process and practice of working with the relevant committees and other practical issues beyond the science, which also need constant attention if the alarms we have developed are to be included successfully in an updated version of the standard
The sensitivity of BAO Dark Energy Constraints to General Isocurvature Perturbations
Baryon Acoustic Oscillation (BAO) surveys will be a leading method for
addressing the dark energy challenge in the next decade. We explore in detail
the effect of allowing for small amplitude admixtures of general isocurvature
perturbations in addition to the dominant adiabatic mode. We find that
non-adiabatic initial conditions leave the sound speed unchanged but instead
excite different harmonics. These harmonics couple differently to Silk damping,
altering the form and evolution of acoustic waves in the baryon-photon fluid
prior to decoupling. This modifies not only the scale on which the sound waves
imprint onto the baryon distribution, which is used as the standard ruler in
BAO surveys, but also the shape, width and height of the BAO peak. We discuss
these effects in detail and show how more general initial conditions impact our
interpretation of cosmological data in dark energy studies. We find that the
inclusion of these additional isocurvature modes leads to an increase in the
Dark Energy Task Force Figure of merit by 140% and 60% for the BOSS and ADEPT
experiments respectively when considered in conjunction with Planck data. We
also show that the incorrect assumption of adiabaticity has the potential to
bias our estimates of the dark energy parameters by () for a
single correlated isocurvature mode, and up to () for three
correlated isocurvature modes in the case of the BOSS (ADEPT) experiment. We
find that the use of the large scale structure data in conjunction with CMB
data improves our ability to measure the contributions of different modes to
the initial conditions by as much as 100% for certain modes in the fully
correlated case.Comment: 20 pages, 17 figure
- …