6 research outputs found

    Anticandidal Potential of Two Cyanobacteria-Synthesized Silver Nanoparticles: Effects on Growth, Cell Morphology, and Key Virulence Attributes of Candida albicans

    No full text
    Candida albicans is an opportunistic human fungal pathogen responsible for 90–100% of mucosal and nosocomial infections worldwide. The emergence of drug-resistant strains has resulted in adverse consequences for human health, including numerous deaths. Consequently, there is an urgent need to identify and develop new antimicrobial drugs to counter these effects. Antimicrobial nanoagents have shown potent inhibitory activity against a number of pathogens through targeting their defense systems, such as biofilm formation. Here, we investigated the anticandidal activity of silver nanoparticles biosynthesized by the cyanobacterial strains Desertifilum sp. IPPAS B-1220 and Nostoc Bahar_M (D-SNPs and N-SNPs, respectively), along with that of silver nitrate (AgNO3), and examined the mechanisms underlying their lethal effects. For this, we performed agar well diffusion and enzyme activity assays (lactate dehydrogenase, adenosine triphosphatase, glutathione peroxidase, and catalase) and undertook morphological examinations using transmission electron microscopy. The effects of the three treatments on Hwp1 and CDR1 gene expression and protein patterns were assessed using qRT-PCR and SDS–PAGE assays, respectively. All of the three treatments inhibited C. albicans growth; disrupted membrane integrity, metabolic function, and antioxidant activity; induced ultrastructural changes in the cell envelope; and disrupted cytoplasmic and nuclear contents. Of the three agents, D-SNPs showed the greatest biocidal activity against C. albicans. Additionally, the D-SNP treatment significantly reduced the gene expression of Hwp1 and CDR1, suggestive of negative effects on biofilm formation ability and resistance potential of C. albicans, and promoted protein degradation. The mechanism involved in the biocidal effects of both D-SNPs and N-SNPs against C. albicans could be attributed to their ability to interfere with fungal cell structures and/or stimulate oxidative stress, enabling them to be used as a robust antimycotic agent

    One-Step Phytofabrication Method of Silver and Gold Nanoparticles Using <i>Haloxylon salicornicum</i> for Anticancer, Antimicrobial, and Antioxidant Activities

    No full text
    Among various routes of metallic nanoparticle (NPs) fabrication, phytosynthesis has significant advantages over other conventional approaches. Plant-mediated synthesis of NPs is a fast, one-step, ecobenign, and inexpensive method with high scalability. Herein, silver (Ag) and gold (Au)-NPs were extracellularly synthesized using aqueous Haloxylon salicornicum (H@Ag-, H@Au-NPs) leaf extracts. GC-MS was performed to analyze the chemical compositions of H. salicornicum extract. H@Ag- and H@Au-NPs were characterized via UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission and scanning electron microscopy, and Zetasizer. H@Ag- and H@Au-NPs have surface plasmon resonance at 435.5 and 530.3 nm, respectively. FTIR and GC-MS data suggest that secondary plant metabolites and hydrocarbons might be responsible for the reduction and stabilization of NPs. XRD demonstrated that both NPs have a crystalline nature. H@Ag-NPs have a uniform spherical shape, whereas H@Au-NPs are spherical with few oval and triangular shapes, and their average nanosizes were 19.1 ± 0.8 and 8.1 ± 0.3 nm, respectively. Hydrodynamic diameters of H@Ag-NPs and H@Au-NPs were 184.7 nm, 56.4, and 295.4 nm, and their potential charges were −24.0 and −24.4 mV, respectively. The inhibitory activity of 500 ”g/mL H@Ag- and H@Au-NPs was tested against Sw480, Sw620, HCT-116, and Caco-2 colon cancer cell lines and two normal cell lines, including HFs and Vero. H@Ag-NPs revealed potent anticancer activity against all cancer cells at low concentrations. Sw480 was the most sensitive cell to H@Ag-NPs, whereas Sw620 was the least permeable one. These findings suggested that the antiproliferative activity of H@Ag-NPs is cell-response-dependent and may be influenced by a variety of factors, including the cellular metabolic state, which influences cellular charge and interactions with charged NPs. Although H@Au-NPs were smaller, their reactivity against cancer cells was weak, suggesting that the chemical properties, metal structure, quantity and chemistry of the functional groups on the NP surface may influence their reactivity. The biocidal activity of 1 mg/mL H@Ag- and H@Au-NPs against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Klebsiella pneumoniae was assessed. H@Ag-NPs showed biocidal activity against Gram-positive bacteria compared to Gram-negative bacteria, whereas H@Au-NPs showed no inhibitory activity. FRAP and DPPH assays were used to determine the scavenging activity of the plant extracts and both NPs. H@Ag-NPs (1 mg/mL) had the greatest scavenging activity compared to tested drugs. These findings suggest that H@Ag-NPs are potent anticancer, antibacterial, and antioxidant agents, while H@Au-NPs may be used as a drug vehicle for pharmaceutical applications

    Lichens—A Potential Source for Nanoparticles Fabrication: A Review on Nanoparticles Biosynthesis and Their Prospective Applications

    No full text
    Green synthesis of nanoparticles (NPs) is a safe, eco-friendly, and relatively inexpensive alternative to conventional routes of NPs production. These methods require natural resources such as cyanobacteria, algae, plants, fungi, lichens, and naturally extracted biomolecules such as pigments, vitamins, polysaccharides, proteins, and enzymes to reduce bulk materials (the target metal salts) into a nanoscale product. Synthesis of nanomaterials (NMs) using lichen extracts is a promising eco-friendly, simple, low-cost biological synthesis process. Lichens are groups of organisms including multiple types of fungi and algae that live in symbiosis. Until now, the fabrication of NPs using lichens has remained largely unexplored, although the role of lichens as natural factories for synthesizing NPs has been reported. Lichens have a potential reducible activity to fabricate different types of NMs, including metal and metal oxide NPs and bimetallic alloys and nanocomposites. These NPs exhibit promising catalytic and antidiabetic, antioxidant, and antimicrobial activities. To the best of our knowledge, this review provides, for the first time, an overview of the main published studies concerning the use of lichen for nanofabrication and the applications of these NMs in different sectors. Moreover, the possible mechanisms of biosynthesis are discussed, together with the various optimization factors influencing the biological synthesis and toxicity of NPs

    One-Step Phytofabrication Method of Silver and Gold Nanoparticles Using Haloxylon salicornicum for Anticancer, Antimicrobial, and Antioxidant Activities

    No full text
    Among various routes of metallic nanoparticle (NPs) fabrication, phytosynthesis has significant advantages over other conventional approaches. Plant-mediated synthesis of NPs is a fast, one-step, ecobenign, and inexpensive method with high scalability. Herein, silver (Ag) and gold (Au)-NPs were extracellularly synthesized using aqueous Haloxylon salicornicum (H@Ag-, H@Au-NPs) leaf extracts. GC-MS was performed to analyze the chemical compositions of H. salicornicum extract. H@Ag- and H@Au-NPs were characterized via UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission and scanning electron microscopy, and Zetasizer. H@Ag- and H@Au-NPs have surface plasmon resonance at 435.5 and 530.3 nm, respectively. FTIR and GC-MS data suggest that secondary plant metabolites and hydrocarbons might be responsible for the reduction and stabilization of NPs. XRD demonstrated that both NPs have a crystalline nature. H@Ag-NPs have a uniform spherical shape, whereas H@Au-NPs are spherical with few oval and triangular shapes, and their average nanosizes were 19.1 &plusmn; 0.8 and 8.1 &plusmn; 0.3 nm, respectively. Hydrodynamic diameters of H@Ag-NPs and H@Au-NPs were 184.7 nm, 56.4, and 295.4 nm, and their potential charges were &minus;24.0 and &minus;24.4 mV, respectively. The inhibitory activity of 500 &micro;g/mL H@Ag- and H@Au-NPs was tested against Sw480, Sw620, HCT-116, and Caco-2 colon cancer cell lines and two normal cell lines, including HFs and Vero. H@Ag-NPs revealed potent anticancer activity against all cancer cells at low concentrations. Sw480 was the most sensitive cell to H@Ag-NPs, whereas Sw620 was the least permeable one. These findings suggested that the antiproliferative activity of H@Ag-NPs is cell-response-dependent and may be influenced by a variety of factors, including the cellular metabolic state, which influences cellular charge and interactions with charged NPs. Although H@Au-NPs were smaller, their reactivity against cancer cells was weak, suggesting that the chemical properties, metal structure, quantity and chemistry of the functional groups on the NP surface may influence their reactivity. The biocidal activity of 1 mg/mL H@Ag- and H@Au-NPs against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Klebsiella pneumoniae was assessed. H@Ag-NPs showed biocidal activity against Gram-positive bacteria compared to Gram-negative bacteria, whereas H@Au-NPs showed no inhibitory activity. FRAP and DPPH assays were used to determine the scavenging activity of the plant extracts and both NPs. H@Ag-NPs (1 mg/mL) had the greatest scavenging activity compared to tested drugs. These findings suggest that H@Ag-NPs are potent anticancer, antibacterial, and antioxidant agents, while H@Au-NPs may be used as a drug vehicle for pharmaceutical applications
    corecore