155 research outputs found

    Distribution of Maximal Luminosity of Galaxies in the Sloan Digital Sky Survey

    Get PDF
    Extreme value statistics (EVS) is applied to the distribution of galaxy luminosities in the Sloan Digital Sky Survey (SDSS). We analyze the DR8 Main Galaxy Sample (MGS), as well as the Luminous Red Galaxies (LRG). Maximal luminosities are sampled from batches consisting of elongated pencil beams in the radial direction of sight. For the MGS, results suggest a small and positive tail index ξ\xi, effectively ruling out the possibility of having a finite maximum cutoff luminosity, and implying that the luminosity distribution function may decay as a power law at the high luminosity end. Assuming, however, ξ=0\xi=0, a non-parametric comparison of the maximal luminosities with the Fisher-Tippett-Gumbel distribution (limit distribution for variables distributed by the Schechter fit) indicates a good agreement provided uncertainties arising both from the finite batch size and from the batch size distribution are accounted for. For a volume limited sample of LRGs, results show that they can be described as being the extremes of a luminosity distribution with an exponentially decaying tail, provided the uncertainties related to batch-size distribution are taken care of

    Number of HIV-1 founder variants is determined by the recency of the source partner infection

    Get PDF
    During sexual transmission, the high genetic diversity of HIV-1 within an individual is frequently reduced to one founder variant that initiates infection. Understanding the drivers of this bottleneck is crucial to developing effective infection control strategies. Little is known about the importance of the source partner during this bottleneck. To test the hypothesis that the source partner affects the number of HIV founder variants, we developed a phylodynamic model calibrated using genetic and epidemiological data on all existing transmission pairs for whom the direction of transmission and the infection stage of the source partner are known. Our results suggest that acquiring infection from someone in the acute (early) stage of infection increases the risk of multiple-founder variant transmission compared with acquiring infection from someone in the chronic (later) stage of infection. This study provides the first direct test of source partner characteristics to explain the low frequency of multiple-founder strain infections

    CLASH: New Multiple-Images Constraining the Inner Mass Profile of MACS J1206.2-0847

    Get PDF
    We present a strong-lensing analysis of the galaxy cluster MACS J1206.2-0847 (zz=0.44) using UV, Optical, and IR, HST/ACS/WFC3 data taken as part of the CLASH multi-cycle treasury program, with VLT/VIMOS spectroscopy for some of the multiply-lensed arcs. The CLASH observations, combined with our mass-model, allow us to identify 47 new multiply-lensed images of 12 distant sources. These images, along with the previously known arc, span the redshift range 1\la z\la5.5, and thus enable us to derive a detailed mass distribution and to accurately constrain, for the first time, the inner mass-profile of this cluster. We find an inner profile slope of dlogΣ/dlogθ0.55±0.1d\log \Sigma/d\log \theta\simeq -0.55\pm 0.1 (in the range [1\arcsec, 53\arcsec], or 5\la r \la300 kpc), as commonly found for relaxed and well-concentrated clusters. Using the many systems uncovered here we derive credible critical curves and Einstein radii for different source redshifts. For a source at zs2.5z_{s}\simeq2.5, the critical curve encloses a large area with an effective Einstein radius of \theta_{E}=28\pm3\arcsec, and a projected mass of 1.34±0.15×1014M1.34\pm0.15\times10^{14} M_{\odot}. From the current understanding of structure formation in concordance cosmology, these values are relatively high for clusters at z0.5z\sim0.5, so that detailed studies of the inner mass distribution of clusters such as MACS J1206.2-0847 can provide stringent tests of the Λ\LambdaCDM paradigm.Comment: 7 pages, 1 table, 4 figures; submitted to ApJ Letters; V3: minor correction

    The Cluster Lensing and Supernova Survey with Hubble (CLASH): Strong Lensing Analysis of Abell 383 from 16-Band HST WFC3/ACS Imaging

    Get PDF
    We examine the inner mass distribution of the relaxed galaxy cluster Abell 383 in deep 16-band HST/ACS+WFC3 imaging taken as part of the CLASH multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage to better identify lensed systems and generate precise photometric redshifts. This information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply-lensed images and candidates, so that a total of 27 multiple-images of 9 systems are used to tightly constrain the inner mass profile, dlogΣ/dlogr0.6±0.1d\log \Sigma/d\log r\simeq -0.6\pm 0.1 (r<160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01<z<6.03, with the higher redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap. The overall mass profile is well fitted by an NFW profile with M_{vir}=(5.37^{+0.70}_{-0.63}\pm 0.26) x 10^{14}M_{\odot}/h and a relatively high concentration, c_{vir}=8.77^{+0.44}_{-0.42}\pm 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of Abell 383 is modest by the standards of other lensing clusters, r_{E}\simeq16\pm2\arcsec (for z_s=2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25 clusters, 20 of which are X-ray selected relaxed clusters, enabling a precise determination of the representative mass profile free from lensing bias. (ABRIDGED)Comment: 15 pages, 14 figures, 2 tabels; V3 matches the submitted version later published in Ap

    Investigating CTL Mediated Killing with a 3D Cellular Automaton

    Get PDF
    Cytotoxic T lymphocytes (CTLs) are important immune effectors against intra-cellular pathogens. These cells search for infected cells and kill them. Recently developed experimental methods in combination with mathematical models allow for the quantification of the efficacy of CTL killing in vivo and, hence, for the estimation of parameters that characterize the effect of CTL killing on the target cell populations. It is not known how these population-level parameters relate to single-cell properties. To address this question, we developed a three-dimensional cellular automaton model of the region of the spleen where CTL killing takes place. The cellular automaton model describes the movement of different cell populations and their interactions. Cell movement patterns in our cellular automaton model agree with observations from two-photon microscopy. We find that, despite the strong spatial nature of the kinetics in our cellular automaton model, the killing of target cells by CTLs can be described by a term which is linear in the target cell frequency and saturates with respect to the CTL levels. Further, we find that the parameters describing CTL killing on the population level are most strongly impacted by the time a CTL needs to kill a target cell. This suggests that the killing of target cells, rather than their localization, is the limiting step in CTL killing dynamics given reasonable frequencies of CTL. Our analysis identifies additional experimental directions which are of particular importance to interpret estimates of killing rates and could advance our quantitative understanding of CTL killing

    Geographic and ecologic heterogeneity in elimination thresholds for the major vector-borne helminthic disease, lymphatic filariasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large-scale intervention programmes to control or eliminate several infectious diseases are currently underway worldwide. However, a major unresolved question remains: what are reasonable stopping points for these programmes? Recent theoretical work has highlighted how the ecological complexity and heterogeneity inherent in the transmission dynamics of macroparasites can result in elimination thresholds that vary between local communities. Here, we examine the empirical evidence for this hypothesis and its implications for the global elimination of the major macroparasitic disease, lymphatic filariasis, by applying a novel Bayesian computer simulation procedure to fit a dynamic model of the transmission of this parasitic disease to field data from nine villages with different ecological and geographical characteristics. Baseline lymphatic filariasis microfilarial age-prevalence data from three geographically distinct endemic regions, across which the major vector populations implicated in parasite transmission also differed, were used to fit and calibrate the relevant vector-specific filariasis transmission models. Ensembles of parasite elimination thresholds, generated using the Bayesian fitting procedure, were then examined in order to evaluate site-specific heterogeneity in the values of these thresholds and investigate the ecological factors that may underlie such variability</p> <p>Results</p> <p>We show that parameters of density-dependent functions relating to immunity, parasite establishment, as well as parasite aggregation, varied significantly between the nine different settings, contributing to locally varying filarial elimination thresholds. Parasite elimination thresholds predicted for the settings in which the mosquito vector is anopheline were, however, found to be higher than those in which the mosquito is culicine, substantiating our previous theoretical findings. The results also indicate that the probability that the parasite will be eliminated following six rounds of Mass Drug Administration with diethylcarbamazine and albendazole decreases markedly but non-linearly as the annual biting rate and parasite reproduction number increases.</p> <p>Conclusions</p> <p>This paper shows that specific ecological conditions in a community can lead to significant local differences in population dynamics and, consequently, elimination threshold estimates for lymphatic filariasis. These findings, and the difficulty of measuring the key local parameters (infection aggregation and acquired immunity) governing differences in transmission thresholds between communities, mean that it is necessary for us to rethink the utility of the current anticipatory approaches for achieving the elimination of filariasis both locally and globally.</p

    Luminosity functions in the CLASH-VLT cluster MACS J1206.2-0847: The importance of tidal interactions

    Get PDF
    We present the optical luminosity functions (LFs) of galaxies for the CLASH-VLT cluster MACS J1206.2-0847 at z D 0:439, based on HST and SUBARU data, including ~600 spectroscopically confirmed member galaxies. The LFs on the wide SUBARU FoV are well described by a single Schechter function down to M~M*+3, whereas this fit is poor for HST data, due to a faint-end upturn visible down M~M*+7, suggesting a bimodal behaviour. We also investigate the effect of local environment by deriving the LFs in four different regions, according to the distance from the centre, finding an increase in the faint-end slope going from the core to the outer rings. Our results confirm and extend our previous findings on the analysis of mass functions, which showed that the galaxies with stellar mass below 1010:5Mˇ have been significantly affected by tidal interaction effects, thus contributing to the intra cluster light (ICL)

    Quantification system for the viral dynamics of a highly pathogenic simian/human immunodeficiency virus based on an in vitro experiment and a mathematical model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developing a quantitative understanding of viral kinetics is useful for determining the pathogenesis and transmissibility of the virus, predicting the course of disease, and evaluating the effects of antiviral therapy. The availability of data in clinical, animal, and cell culture studies, however, has been quite limited. Many studies of virus infection kinetics have been based solely on measures of total or infectious virus count. Here, we introduce a new mathematical model which tracks both infectious and total viral load, as well as the fraction of infected and uninfected cells within a cell culture, and apply it to analyze time-course data of an SHIV infection <it>in vitro</it>.</p> <p>Results</p> <p>We infected HSC-F cells with SHIV-KS661 and measured the concentration of Nef<it>-</it>negative (target) and Nef<it>-</it>positive (infected) HSC-F cells, the total viral load, and the infectious viral load daily for nine days. The experiments were repeated at four different MOIs, and the model was fitted to the full dataset simultaneously. Our analysis allowed us to extract an infected cell half-life of 14.1 h, a half-life of SHIV-KS661 infectiousness of 17.9 h, a virus burst size of 22.1 thousand RNA copies or 0.19 TCID<sub>50</sub>, and a basic reproductive number of 62.8. Furthermore, we calculated that SHIV-KS661 virus-infected cells produce at least 1 infectious virion for every 350 virions produced.</p> <p>Conclusions</p> <p>Our method, combining <it>in vitro </it>experiments and a mathematical model, provides detailed quantitative insights into the kinetics of the SHIV infection which could be used to significantly improve the understanding of SHIV and HIV-1 pathogenesis. The method could also be applied to other viral infections and used to improve the <it>in vitro </it>determination of the effect and efficacy of antiviral compounds.</p

    The dynamics and efficacy of antiviral RNA silencing: A model study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical modeling is important to provide insight in the complicated pathway of RNA silencing. RNA silencing is an RNA based mechanism that is widely used by eukaryotes to fight viruses, and to control gene expression.</p> <p>Results</p> <p>We here present the first mathematical model that combines viral growth with RNA silencing. The model involves a plus-strand RNA virus that replicates through a double-strand RNA intermediate. The model of the RNA silencing pathway consists of cleavage of viral RNA into siRNA by Dicer, target cleavage of viral RNA via the RISC complex, and a secondary response. We found that, depending on the strength of the silencing response, different viral growth patterns can occur. Silencing can decrease viral growth, cause oscillations, or clear the virus completely. Our model can explain various observed phenomena, even when they seem contradictory at first: the diverse responses to the removal of RNA dependent RNA polymerase; different viral growth curves; and the great diversity in observed siRNA ratios.</p> <p>Conclusion</p> <p>The model presented here is an important step in the understanding of the natural functioning of RNA silencing in viral infections.</p

    Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)

    Get PDF
    Here we present a review of the literature of influenza modeling studies, and discuss how these models can provide insights into the future of the currently circulating novel strain of influenza A (H1N1), formerly known as swine flu. We discuss how the feasibility of controlling an epidemic critically depends on the value of the Basic Reproduction Number (R0). The R0 for novel influenza A (H1N1) has recently been estimated to be between 1.4 and 1.6. This value is below values of R0 estimated for the 1918–1919 pandemic strain (mean R0~2: range 1.4 to 2.8) and is comparable to R0 values estimated for seasonal strains of influenza (mean R0 1.3: range 0.9 to 2.1). By reviewing results from previous modeling studies we conclude it is theoretically possible that a pandemic of H1N1 could be contained. However it may not be feasible, even in resource-rich countries, to achieve the necessary levels of vaccination and treatment for control. As a recent modeling study has shown, a global cooperative strategy will be essential in order to control a pandemic. This strategy will require resource-rich countries to share their vaccines and antivirals with resource-constrained and resource-poor countries. We conclude our review by discussing the necessity of developing new biologically complex models. We suggest that these models should simultaneously track the transmission dynamics of multiple strains of influenza in bird, pig and human populations. Such models could be critical for identifying effective new interventions, and informing pandemic preparedness planning. Finally, we show that by modeling cross-species transmission it may be possible to predict the emergence of pandemic strains of influenza
    corecore