4 research outputs found

    High Diazotrophic Diversity but Low N2 Fixation Activity in the Northern Benguela Upwelling System Confirming the Enigma of Nitrogen Fixation in Oxygen Minimum Zone Waters

    Get PDF
    Oxygen minimum zones (OMZs) have been suggested as a suitable niche for the oxygen-sensitive process of biological fixation of dinitrogen (N2) gas. However, most N2 fixation rates reported from such waters are low. This low N2 fixation activity has been proposed to result from the unusual community of N2 fixers, in which cyanobacteria were typically underrepresented. The Northern Benguela Upwelling System (North BUS) is part of one of the most productive marine ecosystems and hosts a well-developed OMZ. Although previous observations indicated low to absent N2 fixation rates, the community composition of diazotrophs needed to understand the North BUS has not been described. Here, we present a first detailed analysis of the diazotrophic diversity in the North BUS OMZ and the Angola tropical zone (ATZ), based on genetic data and isotope speciation. Consistent with a previous study, we detected a slight N deficit in the OMZ, but isotope data did not indicate any active or past N2 fixation. The diazotroph community in the North BUS was dominated by non-cyanobacterial microbes clustering with members of gamma-proteobacteria, as is typical for other OMZ regions. However, we found a strikingly high diversity of Cluster III diazotrophs not yet described in other OMZs. In contrast to previous observations, we could also identify cyanobacteria of the clades Trichodesmium sp., UCYN-A and Cyanothece sp., in surface waters connected to or above the OMZ, which were potentially active as shown by the presence of genes and transcripts of the key functional marker gene for N2 fixation, nifH. While the detection of diazotrophs and the absence of active N2 fixation (based on isotopic speciation) are consistent with other OMZ observations, the detected regional variation in the diversity and presence of cyanobacteria indicate that we still are far from understanding the role of diazotrophs in OMZs, which, however, is relevant for understanding the N cycle in OMZ waters, as well for predicting the future development of OMZ biogeochemistry in a changing ocean

    Base de données mondiale des diazotrophes océaniques version 2 et estimation élevée de la fixation de N 2 dans l'océan mondial

    No full text
    International audienceAbstract. Marine diazotrophs convert dinitrogen (N2) gas into bioavailable nitrogen (N), supporting life in the global ocean. In 2012, the first version of the global oceanic diazotroph database (version 1) was published. Here, we present an updated version of the database (version 2), significantly increasing the number of in situ diazotrophic measurements from 13 565 to 55 286. Data points for N2 fixation rates, diazotrophic cell abundance, and nifH gene copy abundance have increased by 184 %, 86 %, and 809 %, respectively. Version 2 includes two new data sheets for the nifH gene copy abundance of non-cyanobacterial diazotrophs and cell-specific N2 fixation rates. The measurements of N2 fixation rates approximately follow a log-normal distribution in both version 1 and version 2. However, version 2 considerably extends both the left and right tails of the distribution. Consequently, when estimating global oceanic N2 fixation rates using the geometric means of different ocean basins, version 1 and version 2 yield similar rates (43–57 versus 45–63 Tg N yr−1; ranges based on one geometric standard error). In contrast, when using arithmetic means, version 2 suggests a significantly higher rate of 223±30 Tg N yr−1 (mean ± standard error; same hereafter) compared to version 1 (74±7 Tg N yr−1). Specifically, substantial rate increases are estimated for the South Pacific Ocean (88±23 versus 20±2 Tg N yr−1), primarily driven by measurements in the southwestern subtropics, and for the North Atlantic Ocean (40±9 versus 10±2 Tg N yr−1). Moreover, version 2 estimates the N2 fixation rate in the Indian Ocean to be 35±14 Tg N yr−1, which could not be estimated using version 1 due to limited data availability. Furthermore, a comparison of N2 fixation rates obtained through different measurement methods at the same months, locations, and depths reveals that the conventional 15N2 bubble method yields lower rates in 69 % cases compared to the new 15N2 dissolution method. This updated version of the database can facilitate future studies in marine ecology and biogeochemistry. The database is stored at the Figshare repository (https://doi.org/10.6084/m9.figshare.21677687; Shao et al., 2022).Résumé. Les diazotrophes marins convertissent le diazote (N2) gazeux en azote (N) biodisponible, ce qui favorise la vie dans l'océan mondial. En 2012, la première version de la base de données mondiale des diazotrophes océaniques (version 1) a été publiée. Nous présentons ici une version actualisée de la base de données (version 2), augmentant de manière significative le nombre de mesures diazotrophiques in situ de 13 565 à 55 286. Les points de données pour les taux de fixation de N2, l'abondance des cellules diazotrophes et l'abondance des copies du gène nifH ont augmenté de 184 %, 86 % et 809 %, respectivement. La version 2 comprend deux nouvelles fiches de données pour l'abondance des copies du gène nifH des diazotrophes non cyanobactériens et les taux de fixation de N2 spécifiques aux cellules. Les mesures des taux de fixation N2 suivent approximativement une distribution log-normale dans les versions 1 et 2. Cependant, la version 2 étend considérablement les queues gauche et droite de la distribution. Par conséquent, lorsque l'on estime les taux de fixation de N2 dans l'océan mondial en utilisant les moyennes géométriques des différents bassins océaniques, la version 1 et la version 2 donnent des taux similaires (43-57 contre 45-63 Tg N an-1 ; fourchettes basées sur une erreur géométrique type). En revanche, lorsque l'on utilise les moyennes arithmétiques, la version 2 suggère un taux significativement plus élevé de 223±30 Tg N an-1 (moyenne ± erreur standard ; idem ci-après) par rapport à la version 1 (74±7 Tg N an-1). Plus précisément, des augmentations substantielles du taux sont estimées pour l'océan Pacifique Sud (88±23 contre 20±2 Tg N an-1), principalement grâce aux mesures effectuées dans les régions subtropicales du sud-ouest, et pour l'océan Atlantique Nord (40±9 contre 10±2 Tg N an-1). En outre, la version 2 estime le taux de fixation de N2 dans l'océan Indien à 35±14 Tg N an-1, ce qui n'a pas pu être estimé avec la version 1 en raison de la disponibilité limitée des données. En outre, une comparaison des taux de fixation de N2 obtenus par différentes méthodes de mesure aux mêmes mois, lieux et profondeurs révèle que la méthode conventionnelle des bulles de 15N2 donne des taux inférieurs dans 69 % des cas par rapport à la nouvelle méthode de dissolution de 15N2. Cette version actualisée de la base de données peut faciliter les études futures en écologie marine et en biogéochimie. La base de données est stockée dans le dépôt Figshare (https://doi.org/10.6084/m9.figshare.21677687 ; Shao et al., 2022)

    Global oceanic diazotroph database version 2 and elevated estimate of global oceanic N2 fixation

    Get PDF
    Marine diazotrophs convert dinitrogen (N2) gas into bioavailable nitrogen (N), supporting life in the global ocean. In 2012, the first version of the global oceanic diazotroph database (version 1) was published. Here, we present an updated version of the database (version 2), significantly increasing the number of in situ diazotrophic measurements from 13 565 to 55 286. Data points for N2 fixation rates, diazotrophic cell abundance, and nifH gene copy abundance have increased by 184 %, 86 %, and 809 %, respectively. Version 2 includes two new data sheets for the nifH gene copy abundance of non-cyanobacterial diazotrophs and cell-specific N2 fixation rates. The measurements of N2 fixation rates approximately follow a log-normal distribution in both version 1 and version 2. However, version 2 considerably extends both the left and right tails of the distribution. Consequently, when estimating global oceanic N2 fixation rates using the geometric means of different ocean basins, version 1 and version 2 yield similar rates (43–57 versus 45–63 Tg N yr−1; ranges based on one geometric standard error). In contrast, when using arithmetic means, version 2 suggests a significantly higher rate of 223±30 Tg N yr−1 (mean ± standard error; same hereafter) compared to version 1 (74±7 Tg N yr−1). Specifically, substantial rate increases are estimated for the South Pacific Ocean (88±23 versus 20±2 Tg N yr−1), primarily driven by measurements in the southwestern subtropics, and for the North Atlantic Ocean (40±9 versus 10±2 Tg N yr−1). Moreover, version 2 estimates the N2 fixation rate in the Indian Ocean to be 35±14 Tg N yr−1, which could not be estimated using version 1 due to limited data availability. Furthermore, a comparison of N2 fixation rates obtained through different measurement methods at the same months, locations, and depths reveals that the conventional 15N2 bubble method yields lower rates in 69 % cases compared to the new 15N2 dissolution method. This updated version of the database can facilitate future studies in marine ecology and biogeochemistry. The database is stored at the Figshare repository (https://doi.org/10.6084/m9.figshare.21677687; Shao et al., 2022)
    corecore