51 research outputs found

    Galectin-1 Is Part of Human Trophoblast Invasion Machinery - A Functional Study In Vitro

    Get PDF
    Interactions of glycoconjugates with endogenous galectins, have been long proposed to participate in several reproductive processes including implantation. In human placenta gal-1, gal-3, gal-8, and gal-13 proteins are known to be present. Each of them has been proposed to play multiple functions, but so far no clear picture has emerged. We hypothesized that gal-1 participates in trophoblast invasion, and conducted Matrigel invasion assay using isolated cytotrophoblast from first trimester placenta and HTR-8/SVneo cell line to test it.<0.001) by Ox-gal-1 at 1 µg/ml. Both sets of results confirmed involvement of gal-1 in trophoblast invasion. Galectin profile of isolated cytotrophoblast and HTR-8/SVneo cells was established using RT-PCR and real-time PCR and found to consist of gal-1, gal-3 and gal-8 for both cell types. Only gal-1 was located at the trophoblast cell membrane, as determined by FACS analysis, which is consistent with the results of the functional tests.These findings qualify gal-1 as a member of human trophoblast cell invasion machinery

    Co-Conserved Features Associated with cis Regulation of ErbB Tyrosine Kinases

    Get PDF
    BACKGROUND: The epidermal growth factor receptor kinases, or ErbB kinases, belong to a large sub-group of receptor tyrosine kinases (RTKs), which share a conserved catalytic core. The catalytic core of ErbB kinases have functionally diverged from other RTKs in that they are activated by a unique allosteric mechanism that involves specific interactions between the kinase core and the flanking Juxtamembrane (JM) and COOH-terminal tail (C-terminal tail). Although extensive studies on ErbB and related tyrosine kinases have provided important insights into the structural basis for ErbB kinase functional divergence, the sequence features that contribute to the unique regulation of ErbB kinases have not been systematically explored. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we use a Bayesian approach to identify the selective sequence constraints that most distinguish ErbB kinases from other receptor tyrosine kinases. We find that strong ErbB kinase-specific constraints are imposed on residues that tether the JM and C-terminal tail to key functional regions of the kinase core. A conserved RIxKExE motif in the JM-kinase linker region and a glutamine in the inter-lobe linker are identified as two of the most distinguishing features of the ErbB family. While the RIxKExE motif tethers the C-terminal tail to the N-lobe of the kinase domain, the glutamine tethers the C-terminal tail to hinge regions critical for inter-lobe movement. Comparison of the active and inactive crystal structures of ErbB kinases indicates that the identified residues are conformationally malleable and can potentially contribute to the cis regulation of the kinase core by the JM and C-terminal tail. ErbB3, and EGFR orthologs in sponges and parasitic worms, diverge from some of the canonical ErbB features, providing insights into sub-family and lineage-specific functional specialization. CONCLUSION/SIGNIFICANCE: Our analysis pinpoints key residues for mutational analysis, and provides new clues to cancer mutations that alter the canonical modes of ErbB kinase regulation

    The Energy Landscape Analysis of Cancer Mutations in Protein Kinases

    Get PDF
    The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems

    Overcoming resistance to HER2 inhibitors through state-specific kinase binding

    No full text
    The heterodimeric receptor tyrosine kinase complex formed by HER2 and HER3 can act as an oncogenic driver and is also responsible for rescuing a large number of cancers from a diverse set of targeted therapies. Current inhibitors of these proteins, particularly HER2, have dramatically improved patient outcomes in the clinic but recent studies have demonstrated that stimulation of the heterodimeric complex, either by growth factors or increasing the concentrations of HER2 and HER3 at the membrane, significantly diminishes their activity. In order to find an inhibitor of the active HER2/HER3 oncogenic complex we developed a panel of Ba/F3 cell lines suitable for ultra-high throughput screening. Medicinal chemistry on the hit scaffold resulted in a novel inhibitor that acts through the preferential inhibition of the active state of HER2 and as a result is able to overcome cellular mechanisms of resistance such as growth factors or mutations that stabilize the active form of HER2

    Regulation of Kinase Activity in the Caenorhabditis elegans EGF Receptor, LET-23

    No full text
    In the active HER receptor dimers, kinases play distinct roles; one is the catalytically active kinase and the other is its allosteric activator. This specialization enables signaling by the catalytically inactive HER3, which functions exclusively as an allosteric activator upon heterodimerization with other HER receptors. It is unclear whether the allosteric activation mechanism evolved before HER receptors functionally specialized. We determined the crystal structure of the kinase domain of the only EGF receptor in Caenorhabditis elegans, LET-23. Our structure of a non-human EGFR kinase reveals autoinhibitory features conserved in the human counterpart. Strikingly, mutations within the putative allosteric dimer interface abrogate activity of the isolated LET-23 kinase and of the full-length receptor despite these regions being only partially conserved with human EGFR. Our results indicate that ancestral EGFRs have built-in features that poise them for allosteric activation that could facilitate emergence of the catalytically dead, yet functional, orthologs
    corecore