34 research outputs found

    Acquired angioedema

    Get PDF
    Acquired angioedema (AAE) is characterized by acquired deficiency of C1 inhibitor (C1-INH), hyperactivation of the classical pathway of human complement and angioedema symptoms mediated by bradykinin released by inappropriate activation of the contact-kinin system. Angioedema recurs at unpredictable intervals, lasts from two to five days and presents with edema of the skin (face, limbs, genitals), severe abdominal pain with edema of the gastrointestinal mucosa, life-threateing edema of the upper respiratory tract and edema of the oral mucosa and of the tongue. AAE recurs in association with various conditions and particularly with different forms of lymphoproliferative disorders. Neutralizing autoantibodies to C1-INH are present in the majority of patients. The therapeutic approach to a patient with AAE should first be aimed to avoid fatalities due to angioedema and then to avoid the disability caused be angioedema recurrences. Acute attacks can be treated with plasma-derived C1-INH, but some patients become non-responsive and in these patients the kallikrein inhibitor ecallantide and the bradykinin receptor antagonist icatibant can be effective. Angioedema prophylaxis is performed using antifibrinolytic agents and attenuated androgens with antifibrinolytic agents providing somewhat better results. Treatment of the associated disease can resolve AAE in some patients

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link

    Uncertainty Study of Reflectance Measurements for Concentrating Solar Reflectors

    Get PDF
    The solar reflector is one of the main components of concentrated solar thermal systems. Therefore, accurate knowledge of its solar-weighted, near-specular reflectance is highly important. Currently, this parameter cannot be properly measured with a single commercial instrument. There is a great interest in having a suitable procedure that can guarantee the accuracy of reflector quality analysis, which already led to the publication of an international measurement guideline (title “Parameters and method to evaluate reflectance properties of reflector materials for concentrating solar power technology”). Still, more research work is needed to improve the state of the art. At present, both the specular reflectance and the spectral hemispherical reflectance are measured by using commercial portable reflectometers and spectrophotometers, respectively, to gain enough information. This article concentrates on the evaluation and calculation of the type-B (nonstatistical) uncertainties associated with these employed instruments and, therefore, leads to a more accurate definition of the measurement uncertainty. Considering type-B uncertainty, the expanded uncertainties of measurements for most of the reflector types are UB,ref = 0.006 for monochromatic specular reflectance and UB,spec = 0.016 for solar-weighted hemispherical reflectance

    Effective Multi-resolution Rendering and Texture Compression for Captured Volumetric Trees

    Get PDF
    Trees can be realistically rendered in synthetic environments by creating volumetric representations from photographs. Volumetric trees created with previous methods are expensive to render due to the high number of primitives, and have very high texture memory requirements. We present an efficient multi-resolution rendering method and an effective texture compression solution, addressing both shortcomings. Our method uses an octree with appropriate textures at intermediate hierarchy levels and applies an effective pruning strategy. For texture compression, we adapt a vector quantization approach to use a perceptually accurate colour space, and modify the codebook generation of the Generalized Lloyd Algorithm to further improve texture quality. Combined with several hardware accelerations, our approach achieves a two orders of magnitude reduction in texture memory requirements; in addition, it is now possible to render tens or even hundreds of captured trees at interactive rates

    Soiling and Degradation Analysis of Solar Mirrors

    No full text
    The degradation and the soiling of the mirrors are dependent of the solar field and the mirrors technologies, the local climate, the meteorological events, the O&M tasks and the human activities around the site. In the frame of the European project SFERA II, the SODAM project has been the opportunity to compare the soiling and the degradation mechanisms on a Fresnel solar field installed in the South of France and on a parabolic-through solar field installed in the South of Spain. The analysis of the soiling has shown equivalent maximum weekly reflectance loss due to soiling in both sites but a double mean weekly reflectance loss in Spain respect to France, as well as typical meteorological events to be taken into account to adapt the cleaning strategies. Among the meteorological parameters mainly influencing the soiling, the study has revealed the effect of the rain and of the DNI. In parallel, the analysis of the degradation mechanisms has highlighted a common chalking of the protective back paint layers due to the irradiation. This chalking being associated to a leaching of the paint layers in the site of Cadarache due to the high presence of liquid water. A difference in the speed of corrosion of the silver layer has been also noticed, leading to a difference in the mechanisms of delamination of the paints layers

    Degradation types of reflector materials used in concentrating solar thermal systems

    No full text
    Reflector materials for concentrating solar thermal (CST) technologies must preserve high quality properties (in terms of solar specular reflectance) over the complete lifetime of the solar system. However, these solar components are exposed during their operation to a combination of ambient agents that provokes a number of different defects that might severely curtail their quality. To avoid significant failures, durability studies are being conducted both in outdoor and accelerated aging conditions. The identification of the possible degradation of solar reflectors is thus a key issue for the feasibility of a CST system. This review paper presents a survey of the durability tests most commonly used (mechanical abrasion/erosion, humidity, temperature, thermal cycling, UV radiation and chemical agents), as well as the main degradation types reported in the literature for different reflectors materials (erosion, abrasion, stains on the glass, metal corrosion, tarnishing, cracking, delamination, decohesion, blistering, yellowing, discoloration, haze, agglomeration, diffusion, chalking, etc.). In addition, some defects recently identified are revealed in this publication for the first time. The results shown comprise a useful tool for the interpretation of further durability studies

    Influence of gaseous pollutants and their synergistic effects on the aging of reflector materials for concentrating solar thermal technologies

    No full text
    Concentrating solar thermal technologies have experienced an important boost in the last few years. Besides the production of electricity, they are particularly useful for the supply of industrial process heat. The industrial atmospheres affecting these solar plants typically contain gaseous pollutants that are likely to promote corrosion on the components of the solar facility, specifically solar reflectors, thereby compromising their optimal performance and the overall system efficiency. Seven accelerated aging tests were designed to study the effects of three air pollutants (H2S, SO2 and NO2) on the durability of two commercially available reflector types (silveredglass and aluminum), both in single-gas tests and in multicomponent gas mixtures. Additionally, the same material types were exposed outdoors at five representative polluted sites, including industrial, urban and coastal environments. Reflectance and optical microscope monitoring corroborated which degree of corrosion was developed on a specific type of reflector in the different tests with gaseous pollutants, as well as the synergistic effects of gas combinations. For example, tests with sulfur were harmful for silvered-glass reflectors (up to a total of 16 corrosion spots), whereas aluminum was particularly affected by tests with NO2 (numerous micro spots of around 50 μm size). Moreover, comparisons of the corrosion patterns found in accelerated-aging and outdoor exposures revealed which laboratory test reproduced the different real polluted atmospheres in the most realistic way, which is the main goal of this work. For instance, the degradation found at Site 2 was reproduced by Test NO2+SO2, with an acceleration factor of 27

    Highly pathogenic adapted HIV-1 strains limit host immunity and dictate rapid disease progression.

    No full text
    OBJECTIVE:: The study of HIV-1 rapid progressors has been limited to specific case reports. Nevertheless, identification and characterization of the viral and host factors involved in rapid progression are crucial when attempting to uncover the correlates of rapid disease outcome. DESIGN:: We carried out comparative functional analyses in rapid progressors (n = 46) and standard progressors (n = 46) early after HIV-1 seroconversion (≤1 year). The viral traits tested were viral replicative capacity, co-receptor usage, and genomic variation. Host CD8 T-cell responses, humoral activity, and HLA immunogenetic markers were also determined. RESULTS:: Our data demonstrate an unusual convergence of highly pathogenic HIV-1 strains in rapid progressors. Compared with standard progressors, rapid progressor viral strains show higher in-vitro replicative capacity (81.5 vs. 67.9%; P = 0.025) and greater X4/DM co-receptor usage (26.3 vs. 2.8%; P = 0.006) in early infection. Limited or absent functional HIV-1 CD8 T-cell responses and neutralizing activity were measured in rapid progressors. Moreover, the increase in common HLA allele-restricted CD8 T-cell escape mutations in rapid progressors acts as a signature of uncontrolled HIV-1 replication and early impairment of adaptive cellular responses. CONCLUSION:: Our data support a dominant role for viral factors in rapid progressors. Robust HIV-1 replication and intrinsic viral properties limit host adaptive immune responses, thus driving rapid disease progression
    corecore