53 research outputs found

    Production properties of K*(892) vector mesons and their spin alignment as measured in the NOMAD experiment

    Get PDF
    First measurements of K*(892) mesons production properties and their spin alignment in nu_mu charged current (CC) and neutral current (NC) interactions are presented. The analysis of the full data sample of the NOMAD experiment is performed in different kinematic regions. For K*+ and K*- mesons produced in nu_mu CC interactions and decaying into K0 pi+/- we have found the following yields per event: (2.6 +/- 0.2 (stat.) +/- 0.2 (syst.))% and (1.6 +/- 0.1 (stat.) +/- 0.1 (syst.))% respectively, while for the K*+ and K*- mesons produced in nu NC interactions the corresponding yields per event are: (2.5 +/- 0.3 (stat.) +/- 0.3 (syst.))% and (1.0 +/- 0.3 (stat.) +/- 0.2 (syst.))%. The results obtained for the rho00 parameter, 0.40 +/- 0.06 (stat) +/- 0.03 (syst) and 0.28 +/- 0.07 (stat) +/- 0.03 (syst) for K*+ and K*- produced in nu_mu CC interactions, are compared to theoretical predictions tuned on LEP measurements in e+e- annihilation at the Z0 pole. For K*+ mesons produced in nu NC interactions the measured rho00 parameter is 0.66 +/- 0.10 (stat) +/- 0.05 (syst).Comment: 20 p

    Search for the exotic Θ+\Theta^+ resonance in the NOMAD experiment

    Get PDF
    A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the NOMAD muon neutrino DIS data is reported. The special background generation procedure was developed. The proton identification criteria are tuned to maximize the sensitivity to the Theta signal as a function of xF which allows to study the Theta production mechanism. We do not observe any evidence for the Theta state in the NOMAD data. We provide an upper limit on Theta production rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal

    A Study of Strange Particles Produced in Neutrino Neutral Current Interactions in the NOMAD Experiment

    Get PDF
    Results of a detailed study of strange particle production in neutrino neutral current interactions are presented using the data from the NOMAD experiment. Integral yields of neutral strange particles (K0s, Lambda, Lambda-bar) have been measured. Decays of resonances and heavy hyperons with an identified K0s or Lambda in the final state have been analyzed. Clear signals corresponding to K* and Sigma(1385) have been observed. First results on the measurements of the Lambda polarization in neutral current interactions have been obtained.Comment: Accepted for publication in Nuclear Physics B as a rapid communicatio

    Search for nu(mu)-->nu(e) Oscillations in the NOMAD Experiment

    Get PDF
    We present the results of a search for nu(mu)-->nu(e) oscillations in the NOMAD experiment at CERN. The experiment looked for the appearance of nu(e) in a predominantly nu(mu) wide-band neutrino beam at the CERN SPS. No evidence for oscillations was found. The 90% confidence limits obtained are delta m^2 < 0.4 eV^2 for maximal mixing and sin^2(2theta) < 1.4x10^{-3} for large delta m^2. This result excludes the LSND allowed region of oscillation parameters with delta m^2 > 10 eV^2.Comment: 19 pages, 8 figures. Submitted to Phys. Lett.

    A Precise Measurement of the Muon Neutrino-Nucleon Inclusive Charged Current Cross-Section off an Isoscalar Target in the Energy Range 2.5 < E_\nu < 40 GeV by NOMAD

    Get PDF
    We present a measurement of the muon neutrino-nucleon inclusive charged current cross-section, off an isoscalar target, in the neutrino energy range 2.5Eν402.5 \leq E_\nu \leq 40 GeV. The significance of this measurement is its precision, ±4\pm 4% in 2.5Eν102.5 \leq E_\nu \leq 10 GeV, and ±2.6\pm 2.6% in 10Eν4010 \leq E_\nu \leq 40 GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.Comment: 14 pages, 3 figures, submitted to Phys.Lett.

    A Measurement of Coherent Neutral Pion Production in Neutrino Neutral Current Interactions in NOMAD

    Get PDF
    We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to 1.44×1061.44 \times 10^6 muon-neutrino Charged Current interactions in the energy range 2.5Eν3002.5 \leq E_{\nu} \leq 300 GeV. Neutrino events with only one visible π0\pi^0 in the final state are expected to result from two Neutral Current processes: coherent π0\pi^0 production, {\boldmath ν+Aν+A+π0\nu + {\cal A} \to \nu + {\cal A} + \pi^0} and single π0\pi^0 production in neutrino-nucleon scattering. The signature of coherent π0\pi^0 production is an emergent π0\pi^0 almost collinear with the incident neutrino while π0\pi^0's produced in neutrino-nucleon deep inelastic scattering have larger transverse momenta. In this analysis all relevant backgrounds to the coherent π0\pi^0 production signal are measured using data themselves. Having determined the backgrounds, and using the Rein-Sehgal model for the coherent π0\pi^0 production to compute the detection efficiency, we obtain {\boldmath 4630±522(stat)±426(syst)4630 \pm 522 (stat) \pm 426 (syst)} corrected coherent-π0\pi^0 events with Eπ00.5E_{\pi^0} \geq 0.5 GeV. We measure {\boldmath σ(νAνAπ0)=[72.6±8.1(stat)±6.9(syst)]×1040cm2/nucleus\sigma (\nu {\cal A} \to \nu {\cal A} \pi^0) = [ 72.6 \pm 8.1(stat) \pm 6.9(syst) ] \times 10^{-40} cm^2/nucleus}. This is the most precise measurement of the coherent π0\pi^0 production to date.Comment: 23 pages, 9 figures, accepted for publication in Phys. Lett.

    Bose-Einstein correlations in charged current muon-neutrino interactions in the NOMAD experiment at CERN

    Get PDF
    Bose-Einstein correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R-G = 1.01 +/- 0.05(stat)(-0.06)(+0,09)(sys) fm and for the chaoticity parameter the value lambda = 0.40 +/- 0.03(stat)(-0.06)(+0.01) (sys). Using the Kopylov-Podgoretskii parametrization yields R-KP = 2.07 +/- 0.04(stat)(-0.14)(+0.01) (sys) fm and lambda(KP) = 0.29 +/- 0.06(stat)(-0.04)(+0,01) (sys) Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal comoving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the Bose-Einstein correlations as a function of rapidity, charged particle multiplicity and hadronic energy. A weak dependence of both radius and chaoticity on multiplicity and hadronic energy is found

    A Search for Single Photon Events in Neutrino Interactions

    Get PDF
    We present a search for neutrino-induced events containing a single, exclusive photon using data from the NOMAD experiment at the CERN SPS where the average energy of the neutrino flux is 25\simeq 25 GeV. The search is motivated by an excess of electron-like events in the 200--475 MeV energy region as reported by the MiniBOONE experiment. In NOMAD, photons are identified via their conversion to e+ee^+e^- in an active target embedded in a magnetic field. The background to the single photon signal is dominated by the asymmetric decay of neutral pions produced either in a coherent neutrino-nucleus interaction, or in a neutrino-nucleon neutral current deep inelastic scattering, or in an interaction occurring outside the fiducial volume. All three backgrounds are determined {\it in situ} using control data samples prior to opening the `signal-box'. In the signal region, we observe {\bf 155} events with a predicted background of {\bf 129.2 ±\pm 8.5 ±\pm 3.3}. We interpret this as null evidence for excess of single photon events, and set a limit. Assuming that the hypothetical single photon has a momentum distribution similar to that of a photon from the coherent π0\pi^0 decay, the measurement yields an upper limit on single photon events, {\boldmath <4.0×104< 4.0 \times 10^{-4}} per \nm\ charged current event. Narrowing the search to events where the photon is approximately collinear with the incident neutrino, we observe {\bf 78} events with a predicted background of {\bf 76.6 ±\pm 4.9 ±\pm 1.9} yielding a more stringent upper limit, {\boldmath <1.6×104< 1.6 \times 10^{-4}} per \nm\ charged current event

    A Precision Measurement of Charm Dimuon Production in Neutrino Interactions from the NOMAD Experiment

    Get PDF
    Abstract We present our new measurement of the cross-section for charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NO-MAD experiment. After background subtraction we observe 15,344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample -about 9 × 10 6 events after all analysis cuts -and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) crosssections to ∼ 2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea content of the nucleon within the NLO QCD approximation. We obtain a value of m c (m c ) = 1.159 ± 0.075 GeV/c 2 for the running mass of the charm quark in the MS scheme and a strange quark sea suppression factor of κ s = 0.591 ± 0.019 at Q 2 = 20 GeV 2 /c 2
    corecore