38 research outputs found

    Diets of the Barents Sea cod (Gadus morhua) from the 1930s to 2018

    Get PDF
    A new dataset on the diet of Atlantic cod in the Barents Sea from the 1930s to the present day has been compiled to produce one of the largest fish diet datasets available globally. Atlantic cod is one of the most ecologically and commercially important fish species in the North Atlantic. The stock in the Barents Sea is by far the largest, as a result of both successful management and favourable environmental conditions since the early 2000s. As a top predator, cod plays a key role in the Barents Sea ecosystem. The species has a broad diet consisting mainly of crustaceans and teleost fish, and both the amount and type of prey vary in space and time. The data – from Russia, Norway and the United Kingdom – represent quantitative stomach content records from more than 400 000 fish and qualitative data from 2.5 million fish. Many of the data are from joint collaborative surveys between Norway and Russia. The sampling was conducted throughout each year, allowing for seasonal, annual and decadal comparisons to be made. Visual analysis shows cod diets have changed considerably from the start of the dataset in the 1930s to the present day. There was a large proportion of herring in the diets in the 1930s, whereas in more recent decades capelin, invertebrates and other fish dominate. There are also significant interannual asynchronous fluctuations in prey, particularly capelin and euphausiids. Combining these datasets can help us understand how the environment and ecosystems are responding to climatic changes, and what influences the diet and prey switching of cod. Trends in temperature and variability indices can be tested against the occurrence of different prey items, and the effects of fishing pressure on cod and prey stocks on diet composition could be investigated. The dataset will also enable us to improve parametrization of food web models and to forecast how Barents Sea fisheries may respond in the future to management and to climate change. The Russian data are available through joint projects with the Polar Branch of the Russian Federal Research Institute of Fisheries and Oceanography (VNIRO).publishedVersio

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Identifying the participant characteristics that predict recruitment and retention of participants to randomised controlled trials involving children : a systematic review

    Get PDF
    Background Randomised controlled trials (RCTs) are recommended as the ‘gold standard’ in evaluating health care interventions. The conduct of RCTs is often impacted by difficulties surrounding recruitment and retention of participants in both adult and child populations. Factors influencing recruitment and retention of children to RCTs can be more complex than in adults. There is little synthesised evidence of what influences participation in research involving parents and children. Aim To identify predictors of recruitment and retention in RCTs involving children. Methods A systematic review of RCTs was conducted to synthesise the available evidence. An electronic search strategy was applied to four databases and restricted to English language publications. Quantitative studies reporting participant predictors of recruitment and retention in RCTs involving children aged 0–12 were identified. Data was extracted and synthesised narratively. Quality assessment of articles was conducted using a structured tool developed from two existing quality evaluation checklists. Results Twenty-eight studies were included in the review. Of the 154 participant factors reported, 66 were found to be significant predictors of recruitment and retention in at least one study. These were classified as parent, child, family and neighbourhood characteristics. Parent characteristics (e.g. ethnicity, age, education, socioeconomic status (SES)) were the most commonly reported predictors of participation for both recruitment and retention. Being young, less educated, of an ethnic minority and having low SES appear to be barriers to participation in RCTs although there was little agreement between studies. When analysed according to setting and severity of the child’s illness there appeared to be little variation between groups. The quality of the studies varied. Articles adhered well to reporting guidelines around provision of a scientific rationale for the study and background information as well as displaying good internal consistency of results. However, few studies discussed the external validity of the results or provided recommendations for future research. Conclusion Parent characteristics may predict participation of children and their families to RCTs; however, there was a lack of consensus. Whilst sociodemographic variables may be useful in identifying which groups are least likely to participate they do not provide insight into the processes and barriers to participation for children and families. Further studies that explore variables that can be influenced are warranted. Reporting of studies in this field need greater clarity as well as agreed definitions of what is meant by retention

    Opinion: How to Tackle the Childcare-Conference Conundrum

    No full text
    Conferences are vital forums for academic researchers. At these meetings, scientists communicate new discoveries, form research collaborations, make contacts with funding agencies, and attract new members to our labs and programs. Even with new technological advances that allow remote communication, resource sharing, and networking, face-to-face interactions are a crucial component for one’s career advancement and ongoing education. Early-stage researchers, who benefit significantly from these events, face some notable barriers to attendance. One major challenge is what we call the childcare–conference conundrum: Parent–researchers face a conundrum as they struggle to attend key conferences and further their careers while finding care for the children. Conferences face a conundrum as they assess how to better accommodate mothers and families

    Large biomass reduction effect on the relative role of climate, fishing, and recruitment on fish population dynamics

    No full text
    Abstract Many species around the world have collapsed, yet only some have recovered. A key question is what happens to populations post collapse. Traditionally, marine fish collapses are linked to overfishing, poor climate, and recruitment. We test whether the effect on biomass change from these drivers remains the same after a collapse. We used a regression model to analyse the effect of harvesting, recruitment, and climate variability on biomass change before and after a collapse across 54 marine fish populations around the world. The most salient result was the change in fishing effect that became weaker after a collapse. The change in sea temperature and recruitment effects were more variable across systems. The strongest changes were in the pelagic habitats. The resultant change in the sensitivity to external drivers indicates that whilst biomass may be rebuilt, the responses to variables known to affect stocks may have changed after a collapse. Our results show that a general model applied to many stocks provides useful insights, but that not all stocks respond similarly to a collapse calling for stock-specific models. Stocks respond to environmental drivers differently after a collapse, so caution is needed when using pre-collapse knowledge to advise on population dynamics and management

    Barents Sea cod (Gadus morhua) diet composition: long-term interannual, seasonal, and ontogenetic patterns

    No full text
    Atlantic cod (Gadus morhua) is an ecologically and commercially important species in the North-Atlantic region. Cod is a top predator and information on its trophic ecology is integral for understanding predator–prey relationships and food-web dynamics. We present an analysis of the trophic patterns of Barents Sea (BS) cod using a unique 33-year time-series of stomach-content data from 1984 to 2016. We assessed patterns in diet (prey) composition across years, between seasons, as well as ontogenetic trends in diet, including predator–prey size relationships. Ontogenetic shifts in diet were observed, with fish becoming more important prey with increasing cod size. A very early onset of piscivory was found in  20 cm and increased with size. Juvenile cod exhibit a tendency towards consuming prey up to 33% of their body length, whereas larger cod feed on all prey sizes, resulting in asymmetric predator–prey size distributions. Diet varied significantly during 1984–2016, consistent with changes in both prey, cod abundance, and distribution. Seasonal differences were observed; capelin dominated the winter diet, whereas cod, polar cod, and other fish species were prevalent in summer/autumn months. This work represents an important step towards understanding trophic linkages that determine BS ecosystem dynamics

    Barents Sea cod (Gadus morhua) diet composition: long-term interannual, seasonal, and ontogenetic patterns

    No full text
    Atlantic cod (Gadus morhua) is an ecologically and commercially important species in the North-Atlantic region. Cod is a top predator and information on its trophic ecology is integral for understanding predator–prey relationships and food-web dynamics. We present an analysis of the trophic patterns of Barents Sea (BS) cod using a unique 33-year time-series of stomach-content data from 1984 to 2016. We assessed patterns in diet (prey) composition across years, between seasons, as well as ontogenetic trends in diet, including predator–prey size relationships. Ontogenetic shifts in diet were observed, with fish becoming more important prey with increasing cod size. A very early onset of piscivory was found in  20 cm and increased with size. Juvenile cod exhibit a tendency towards consuming prey up to 33% of their body length, whereas larger cod feed on all prey sizes, resulting in asymmetric predator–prey size distributions. Diet varied significantly during 1984–2016, consistent with changes in both prey, cod abundance, and distribution. Seasonal differences were observed; capelin dominated the winter diet, whereas cod, polar cod, and other fish species were prevalent in summer/autumn months. This work represents an important step towards understanding trophic linkages that determine BS ecosystem dynamics.submittedVersio

    Leopard (Panthera pardus) status, distribution, and the research efforts across its range

    Get PDF
    The leopard’s (Panthera pardus) broad geographic range, remarkable adaptability, and secretive nature have contributed to a misconception that this species might not be severely threatened across its range. We find that not only are several subspecies and regional populations critically endangered but also the overall range loss is greater than the average for terrestrial large carnivores. To assess the leopard’s status, we compile 6,000 records at 2,500 locations from over 1,300 sources on its historic (post 1750) and current distribution. We map the species across Africa and Asia, delineating areas where the species is confirmed present, is possibly present, is possibly extinct or is almost certainly extinct. The leopard now occupies 25–37% of its historic range, but this obscures important differences between subspecies. Of the nine recognized subspecies, three (P. p. pardus, fusca, and saxicolor) account for 97% of the leopard’s extant range while another three (P. p. orientalis, nimr, and japonensis) have each lost as much as 98% of their historic range. Isolation, small patch sizes, and few remaining patches further threaten the six subspecies that each have less than 100,000 km2 of extant range. Approximately 17% of extant leopard range is protected, although some endangered subspecies have far less. We found that while leopard research was increasing, research effort was primarily on the subspecies with the most remaining range whereas subspecies that are most in need of urgent attention were neglected
    corecore