1,953 research outputs found

    What Were They Thinking? The Federal Reserve In The Run-Up To The 2008 Financial Crisis

    Get PDF
    The Federal Reserve (the Fed) is responsible for monitoring, analyzing and ultimately stabilizing US financial markets. It also has unrivalled access to economic data, high-level connections to financial institutions, and a large staff of professionally trained economists. Why then was it apparently unconcerned by the financial developments that are now widely recognized to have caused the 2008 financial crisis? Using a wide range of Fed documents from the pre-crisis period, particularly the transcripts of meetings of the Federal Open Market Committee (FOMC), this paper shows that Fed policymakers and staff were aware of relevant developments in financial markets, but paid infrequent attention to them and disregarded significant systemic threats. Drawing on literatures in economics, political science and sociology, the paper then demonstrates that the Fed\u27s intellectual paradigm in the years before the crisis focused on ‘post hoc interventionism’ – the institution\u27s ability to limit the fallout should a systemic disturbance arise. Further, the paper argues that institutional routines played a crucial role in maintaining this paradigm and in contributing to the Fed\u27s inadequate attention to the warning signals in the pre-crisis period

    Kinetic Monte Carlo simulations of oscillatory shape evolution for electromigration-driven islands

    Full text link
    The shape evolution of two-dimensional islands under electromigration-driven periphery diffusion is studied by kinetic Monte Carlo (KMC) simulations and continuum theory. The energetics of the KMC model is adapted to the Cu(100) surface, and the continuum model is matched to the KMC model by a suitably parametrized choice of the orientation-dependent step stiffness and step atom mobility. At 700 K shape oscillations predicted by continuum theory are quantitatively verified by the KMC simulations, while at 500 K qualitative differences between the two modeling approaches are found.Comment: 7 pages, 6 figure

    Space weather effects on drilling accuracy in the North Sea

    Get PDF
    The oil industry uses geomagnetic field information to aid directional drilling operations when drilling for oil and gas offshore. These operations involve continuous monitoring of the azimuth and inclination of the well path to ensure the target is reached and, for safety reasons, to avoid collisions with existing wells. Although the most accurate method of achieving this is through a gyroscopic survey, this can be time consuming and expensive. An alternative method is a magnetic survey, where measurements while drilling (MWD) are made along the well by magnetometers housed in a tool within the drill string. These MWD magnetic surveys require estimates of the Earth’s magnetic field at the drilling location to correct the downhole magnetometer readings. The most accurate corrections are obtained if all sources of the Earth’s magnetic field are considered. Estimates of the main field generated in the core and the local crustal field can be obtained using mathematical models derived from suitable data sets. In order to quantify the external field, an analysis of UK observatory data from 1983 to 2004 has been carried out. By accounting for the external field, the directional error associated with estimated field values at a mid-latitude oil well (55 N) in the North Sea is shown to be reduced by the order of 20%. This improvement varies with latitude, local time, season and phase of the geomagnetic activity cycle. By accounting for all sources of the field, using a technique called Interpolation In-Field Referencing (IIFR), directional drillers have access to data from a “virtual” magnetic observatory at the drill site. This leads to an error reduction in positional accuracy that is close to matching that of the gyroscopic survey method and provides a valuable independent technique for quality control purposes

    Scale – Time – Complexity: engaging, entangling, and communicating ecology

    Get PDF
    This project proposes a forum for discussion that questions how we engage with our ecology. The panel will be framed within an acknowledgment of scale, time, and complexity as an entry point into a conversation about our local ecology and the universe beyond. The panellists’ aim to initiate a dialogue by situating the discussion around their own art and design research practices. These practices have emerged from local investigations into ecological issues that evolved into two overlapping research clusters, Art and Ecology, and Design and Innovation for Sustainability, at AUT University, in Auckland New Zealand. In our first collaborative project we explore how we might connect with and communicate ‘ecology’, in methods and practice that recognizes and embraces scale, time and complexity as a tactic into the subject, rather than as a barrier to engagement and the development of potential solutions

    Quantifying, Projecting, and Addressing India's Hidden Hunger

    Get PDF
    <p>It is estimated that more than two billion people suffer from ‘hidden hunger’ (micronutrient malnutrition) globally, with nearly half living in India. Despite being highlighted as one the most cost-effective investments for human development, progress on addressing micronutrient deficiencies (MiND) has been slowing. The severe social, health, and economic costs of MiND in India should make it a top priority for domestic governance and international donors alike. This study, for the first time, maps food system pathways from crop production through to household-level food availability, for a range of key vitamins, minerals, and amino acids. Results suggest widespread (>80% total Indian population) risk of deficiencies in calcium, vitamin A, B<sub>12</sub>, folate, in addition to lysine limitation, with more localized deficiencies (<25% population) in iron, zinc, and vitamin B<sub>6</sub>. These deficiencies are the result of a combination of a monotonous cereal-dominated diet lacking in diversity, and overall insufficient food intake. This approach also allowed for “MiND by micronutrient” scenario analysis to 2030, to identify potential intervention points in the food system and the capacity of these interventions to address deficiency. Scenario analysis to 2030 and 2050 indicates that, although increased availability of animal-based products, reduction of supply chain losses, and close to maximum (90%) attainable yields could make some contribution to addressing Indian MiND, additional intervention strategies will be essential. Recommendations for intervention in the short (urgent), near-term (2030), and long-term (2050) have been formulated based on this analysis.</p

    Tools for sustainable product design: additive manufacturing

    Get PDF
    The advent of additive manufacturing technologies presents a number of opportunities that have the potential to greatly benefit designers, and contribute to the sustainability of products. Additive manufacturing technologies have removed many of the manufacturing restrictions that may previously have compromised a designer’s ability to make the product they imagined. Products can also be extensively customized to the user thus, once again, potentially increasing their desirability, pleasure and attachment and therefore their longevity. As additive manufacturing technologies evolve, and more new materials become available, and multiple material technologies are further developed, the field of product design has the potential to greatly change. This paper examines how aspects of additive manufacturing, from a sustainable design perspective, could become a useful tool in the arsenal to bring about the sustainable design of consumer products

    Single-phase laminar flow heat transfer from confined electron beam enhanced surfaces

    Get PDF
    An experimental investigation of the thermal-hydraulic characteristics for single-phase flow through three electron beam enhanced structures was conducted with water at mass flow rates from 0.005 kg/s to 0.045 kg/s. The structures featured copper heat transfer surfaces, approximately 28 mm wide and 32 mm long in the flow direction, with complex three-dimensional (3D) electron beam manufactured pyramid-like structures. The channel height varied depending on the height of the protrusions and the tip clearance was maintained at 0.1-0.3 mm. The average protrusion densities for the three samples S1, S2, and S3 were 13, 11, and 25 per cm2 with protrusion heights of 2.5, 2.8, and 1.6 mm, respectively. The data gathered were compared to those for a smooth channel surface operating under similar conditions. The results show an increase up to approximately three times for the average Nusselt number compared with the smooth surface. This is attributed to the surface irregularities of the enhanced surfaces, which not only increase the heat transfer area but also improve mixing, disturb the thermal and velocity boundary layers, and reduce thermal resistance. The increase in heat transfer with the enhanced surfaces was accompanied by an increase of pressure drop, which has to be considered in design.The authors would like to acknowledge Dr Anita Buxton and Dr Bruce Dance of TWI for their contribution to this project and also EPSRC and TSB for funding the EngD programme and sponsoring the ASTIA collaborative research project that helped to develop the Electron Beam enhanced surfaces respectively

    Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures

    Get PDF
    AbstractParamyxoviruses enter cells by fusion of their lipid envelope with the target cell plasma membrane. Fusion of the viral membrane with the plasma membrane allows entry of the viral genome into the cytoplasm. For paramyxoviruses, membrane fusion occurs at neutral pH, but the trigger mechanism that controls the viral entry machinery such that it occurs at the right time and in the right place remains to be elucidated. Two viral glycoproteins are key to the infection process—an attachment protein that varies among different paramyxoviruses and the fusion (F) protein, which is found in all paramyxoviruses. For many of the paramyxoviruses (parainfluenza viruses 1–5, mumps virus, Newcastle disease virus and others), the attachment protein is the hemagglutinin/neuraminidase (HN) protein. In the last 5 years, atomic structures of paramyxovirus F and HN proteins have been reported. The knowledge gained from these structures towards understanding the mechanism of viral membrane fusion is described

    Catalyst Efficacy of Homogeneous and Heterogeneous Palladium Catalysts in the Direct Arylation of Common Heterocycles

    Get PDF
    The direct arylation of several common heterocycles, using homogeneous and heterogeneous palladium (pre)catalysts, has been examined by initial rate analysis. The study reveals that apparently distinct palladium catalysts can display similar activities in such transformations, implying formation of a comparable active palladium catalyst phase. A substrate dependence was noted for the palladium catalysts examined
    • 

    corecore