3,379 research outputs found
A Twitter narrative of the COVID-19 pandemic in Australia
Social media platforms contain abundant data that can provide comprehensive
knowledge of historical and real-time events. During crisis events, the use of
social media peaks, as people discuss what they have seen, heard, or felt.
Previous studies confirm the usefulness of such socially generated discussions
for the public, first responders, and decision-makers to gain a better
understanding of events as they unfold at the ground level. This study performs
an extensive analysis of COVID-19-related Twitter discussions generated in
Australia between January 2020, and October 2022. We explore the Australian
Twitterverse by employing state-of-the-art approaches from both supervised and
unsupervised domains to perform network analysis, topic modeling, sentiment
analysis, and causality analysis. As the presented results provide a
comprehensive understanding of the Australian Twitterverse during the COVID-19
pandemic, this study aims to explore the discussion dynamics to aid the
development of future automated information systems for epidemic/pandemic
management.Comment: Accepted to ISCRAM 202
Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network
A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities
Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network
A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities
Measurement and Interpretation of Fermion-Pair Production at LEP energies above the Z Resonance
This paper presents DELPHI measurements and interpretations of
cross-sections, forward-backward asymmetries, and angular distributions, for
the e+e- -> ffbar process for centre-of-mass energies above the Z resonance,
from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are
consistent with the predictions of the Standard Model and are used to study a
variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering
and several models which include physics beyond the Standard Model: the
exchange of Z' bosons, contact interactions between fermions, the exchange of
gravitons in large extra dimensions and the exchange of sneutrino in R-parity
violating supersymmetry.Comment: 79 pages, 16 figures, Accepted by Eur. Phys. J.
A Determination of the Centre-of-Mass Energy at LEP2 using Radiative 2-fermion Events
Using e+e- -> mu+mu-(gamma) and e+e- -> qqbar(gamma) events radiative to the
Z pole, DELPHI has determined the centre-of-mass energy, sqrt{s}, using energy
and momentum constraint methods. The results are expressed as deviations from
the nominal LEP centre-of-mass energy, measured using other techniques. The
results are found to be compatible with the LEP Energy Working Group estimates
for a combination of the 1997 to 2000 data sets.Comment: 20 pages, 6 figures, Accepted by Eur. Phys. J.
Study of Tau-pair Production in Photon-Photon Collisions at LEP and Limits on the Anomalous Electromagnetic Moments of the Tau Lepton
Tau-pair production in the process e+e- -> e+e-tau+tau- was studied using
data collected by the DELPHI experiment at LEP2 during the years 1997 - 2000.
The corresponding integrated luminosity is 650 pb^{-1}. The values of the
cross-section obtained are found to be in agreement with QED predictions.
Limits on the anomalous magnetic and electric dipole moments of the tau lepton
are deduced.Comment: 20 pages, 9 figures, Accepted by Eur. Phys. J.
A Measurement of the Tau Hadronic Branching Ratios
The exclusive and semi-exclusive branching ratios of the tau lepton hadronic
decay modes (h- v_t, h- pi0 v_t, h- pi0 pi0 v_t, h- \geq 2pi0 v_t, h- \geq 3pi0
v_t, 2h- h+ v_t, 2h- h+ pi0 v_t, 2h- h+ \geq 2pi0 v_t, 3h- 2h+ v_t and 3h- 2h+
\geq 1pi0 v_t) were measured with data from the DELPHI detector at LEP.Comment: 53 pages, 18 figures, Accepted by Eur. Phys. J.
Evidence for an Excess of Soft Photons in Hadronic Decays of Z^0
Soft photons inside hadronic jets converted in front of the DELPHI main
tracker (TPC) in events of qqbar disintegrations of the Z^0 were studied in the
kinematic range 0.2 < E_gamma < 1 GeV and transverse momentum with respect to
the closest jet direction p_T < 80 MeV/c. A clear excess of photons in the
experimental data as compared to the Monte Carlo predictions is observed. This
excess (uncorrected for the photon detection efficiency) is (1.17 +/- 0.06 +/-
0.27) x 10^{-3} gamma/jet in the specified kinematic region, while the expected
level of the inner hadronic bremsstrahlung (which is not included in the Monte
Carlo) is (0.340 +/- 0.001 +/- 0.038) x 10^{-3} gamma/jet. The ratio of the
excess to the predicted bremsstrahlung rate is then (3.4 +/- 0.2 +/- 0.8),
which is similar in strength to the anomalous soft photon signal observed in
fixed target experiments with hadronic beams.Comment: 37 pages, 9 figures, Accepted by Eur. Phys. J.
Energy dependence of Cronin momentum in saturation model for and collisions
We calculate dependence of Cronin momentum for and
collisions in saturation model. We show that this dependence is consistent with
expectation from formula which was obtained using simple dimentional
consideration. This can be used to test validity of saturation model (and
distinguish among its variants) and measure dependence of saturation
momentum from experimental data.Comment: LaTeX2e, 12 pages, 8 figure
- …