1,410 research outputs found

    Chronic Orofacial Pain: Burning Mouth Syndrome and Other Neuropathic Disorders

    Get PDF
    Chronic orofacial pain is a symptom associated with a wide range of neuropathic, neurovascular, idiopathic, and myofascial conditions that affect a significant proportion of the population. While the collective impact of the subset of the orofacial pain disorders involving neurogenic and idiopathic mechanisms is substantial, some of these are relatively uncommon. Hence, patients with these disorders can be vulnerable to misdiagnosis, sometimes for years, increasing the symptom burden and delaying effective treatment. This manuscript first reviews the decision tree to be followed in diagnosing any neuropathic pain condition, as well as the levels of evidence needed to make a diagnosis with each of several levels of confidence: definite, probable, or possible. It then examines the clinical literature related to the idiopathic and neurogenic conditions that can occasion chronic orofacial pain, including burning mouth syndrome, trigeminal neuralgia, glossopharyngeal neuralgia, post-herpetic neuralgia, and atypical odontalgia. Temporomandibular disorders also are examined as are other headache conditions, even though they are not neurologic conditions, because they are common and can mimic symptoms of the latter disorders. For each of these conditions, the paper reviews literature regarding incidence and prevalence, physiologic and other contributing factors, diagnostic signs and symptoms, and empirical evidence regarding treatments. Finally, in order to improve the quality and accuracy of clinical diagnosis, as well as the efficiency with which effective treatment is initiated and delivered, criteria are offered that can be instrumental in making a differential diagnosis

    Archaeological Investigations within San Pedro Springs Park (41BX19), San Antonio, Bexar County, Texas

    Get PDF
    The University of Texas at San Antonio Center for Archaeological Research (UTSA-CAR) contracted with Adams Environmental, Inc. to provide archaeological services to Capital Improvement Management (CIMS) of the City of San Antonio (COSA) related to the archaeological investigation of selected areas of San Pedro Springs Park in San Antonio, Bexar County, Texas. The CAR conducted archaeological testing at this National Register Site, 41BX19, from early December 2013 to mid-January of 2014. The goals of archaeological investigations were to identify and investigate any proto-historic and historic archaeological deposits associated with Colonial Period occupants of the area, including evidence of the first acequia and associated dam, and the location of the first presidio and villa. In addition, CAR was tasked with the investigation of any prehistoric cultural deposits encountered. This project was performed by staff archaeologists from the CAR. It was conducted under Texas Antiquities Permit No. 6727, with Dr. Steve Tomka serving as Principal Investigator (PI), and Kristi Nichols and Stephen Smith serving as Project Archaeologists. Dr. Tomka departed from UTSA shortly after the completion of fieldwork. At that time, Dr. Raymond Mauldin of CAR assumed PI responsibilities for the project. One hundred and eleven shovel tests, eleven 1-x-1 m test units, two 50-x-50 cm units, two backhoe trenches, and several auger holes were excavated during this effort. Minimal artifactual evidence of colonial occupants was noted during the archaeological investigations. Several Native American bone tempered sherds that could reflect either Late Prehistoric Leon Plain or Goliad ware were recovered. However, no Spanish Majolicas or lead glazed wares were uncovered, and no gunflints were identified in the lithic assemblage. Due to various utility lines and other obstructions, backhoe trenches to search for the acequia and associated dam could not be excavated. It is likely that areas proposed for investigation of the acequia and associated dam have been disturbed by aforementioned utility lines as well as earlier construction within the park. No evidence of the specific location of the first presidio or villa was located. Shovel testing and test units revealed the presence of historic and prehistoric use of the park, though mixing of historic and prehistoric material, as well as other disturbances (e.g., rodents), was common in the deposits. However, there was an increase in prehistoric material with depth as revealed in shovel testing results. Shovel testing located Feature 1, a burned rock feature that possibly was associated with a sheet midden, as well as several areas with high densities of prehistoric materials. Test excavations, based on these shovel tests, suggest that Feature 1 is a discrete feature that lies below a widespread, low-density distribution of burned rock. Shovel testing also identified a high-density cluster of lithic, bone, and burned rock. The excavation of a 1-x-1 m test unit (TU 4) in this area produced over 4,000 pieces of debitage, with over 50% of this total coming from three levels. Burned rock, a variety of tools, faunal material, and charcoal were present throughout these levels. Temporal placement of deposits relied on artifact typologies (e.g., ceramic types, lithic projectile points, lithic tool types) as well as two charcoal and four bone collagen radiocarbon dates. Artifact typologies suggest occupation as early as the Early Archaic as reflected by a possible Guadalupe tool. A series of Late Archaic Points (Castroville, Frio, Marcos, and Montell) and Late Prehistoric point forms (Edwards, Perdiz, and Scallorn) are present from several areas. In addition, a possible Middle Archaic La Jita point was recovered. The bone tempered Native American wares could date as early as AD 1250, though they could also reflect proto-historic or colonial age materials. Other ceramics primarily suggest a mid-nineteenth- to midtwentieth- century occupation. Using the midpoints of the 1-sigma distribution, calibrated radiocarbon dates show use of San Pedro Park from as early as 100 AD (CAR 345; 1905 +/- 22 Radiocarbon Years Before Present [RCYBP]) to as recently as the early twentieth century. The more recent end of that range is a function of two late dates from two different areas of the park. The first of these is on a bison bone (CAR 344) that returned a date of 158 +/- 23 RCYBP. The second is on a bone consistent with a bison-sized animal (CAR 346) that produced a date of 155 +/- 23 RCYBP. The corrected, calibrated dates for these two samples range from AD 1670 to the early 1940s using the 1-sigma spread. The wide range of these dates is related to the flat calibration curve late in time. However, the most probable date range (ca. 36% probability) for these two dates is between AD 1729 and 1779, with a roughly 48% probability that they date prior to AD 1779. Limited testing suggests that, with a few specific exceptions, the upper 30-40 cm of San Pedro Park is extensively disturbed. However, though some disturbances are present, at least three areas have materials in what appears to be good context. These include material dating to the Late Archaic, Late Prehistoric, and possibly the Proto-historic or Colonial Period. Based on historic maps, previous work, and the current investigation, CAR proposes a series of management areas for San Pedro Park. If work in these management areas follows these suggestions for various limits on subsurface impacts, CAR recommends that renovation activities within the park be allowed to proceed. The Texas Historical Commission (THC), in a letter dated February 4, 2015, agreed with these recommendations. Finally, CAR provides several recommendations for public education facilities within the park. In accordance with the THC Permit specifications and the Scope of Work for this project, all field notes, analytical notes, photographs, and other project related documents, along with a copy of the final report, will be curated at the CAR. After quantification and completion of analysis, and in consultation with THC and the COSA Office of Historic Preservation, artifacts possessing little scientific value were discarded pursuant to Chapter 26.27(g)(2) of the Antiquities Code of Texas. Artifact classes discarded specific to this project included samples of burned rock and snail shell, all unidentifiable metal, soil samples, and recent (post-1950) material

    Use of a renal-specific oral supplement by haemodialysis patients with low protein intake does not increase the need for phosphate binders and may prevent a decline in nutritional status and quality of life

    Get PDF
    Background. Protein-energy wasting is a frequent and debilitating condition in maintenance dialysis. We randomly tested if an energy-dense, phosphate-restricted, renal-specific oral supplement could maintain adequate nutritional intake and prevent malnutrition in maintenance haemodialysis patients with insufficient intake. Methods. Eighty-six patients were assigned to a standard care (CTRL) group or were prescribed two 125-ml packs of Renilon 7.5® daily for 3 months (SUPP). Dietary intake, serum (S) albumin, prealbumin, protein nitrogen appearance (nPNA), C-reactive protein, subjective global assessment (SGA) and quality of life (QOL) were recorded at baseline and after 3 months. Results. While intention to treat analysis (ITT) did not reveal strong statistically significant changes in dietary intake between groups, per protocol (PP) analysis showed that the SUPP group increased protein (P < 0.01) and energy (P < 0.01) intakes. In contrast, protein and energy intakes further deteriorated in the CTRL group (PP). Although there was no difference in serum albumin and prealbumin changes between groups, in the total population serum albumin and prealbumin changes were positively associated with the increment in protein intake (r = 0.29, P = 0.01 and r = 0.27, P = 0.02, respectively). The SUPP group did not increase phosphate intake, phosphataemia remained unaffected, and the use of phosphate binders remained stable or decreased. The SUPP group exhibited improved SGA and QOL (P < 0.05). Conclusion. This study shows that providing maintenance haemodialysis patients with insufficient intake with a renal-specific oral supplement may prevent deterioration in nutritional indices and QOL without increasing the need for phosphate binder

    Archaeological Monitoring and Test Excavations at the 1722 Presidio San Antonio de Bexar (Plaza de Armas Buildings), San Antonio, Bexar County, Texas

    Get PDF
    From April 2013 to November 2014, the Center for Archaeological Research (CAR) at The University of Texas at San Antonio (UTSA) conducted archaeological monitoring and test excavations at the site of the 1722 Presidio San Antonio de Bexar, also known in the nineteenth and twentieth centuries as the Plaza de Armas Buildings (Vogel Belt Complex) within Military Plaza in San Antonio, Bexar County, Texas. The project was performed for Ford, Powell and Carson, Architects and Planners, Inc. under contract with the City of San Antonio in anticipation of renovations and improvements to the Plaza de Armas Buildings (Vogel Belt Complex) to serve as offices and studios for the City of San Antonio. The complex is listed as contributing to the Main and Military Plaza National Register of Historic Places District, with the buildings listed individually on the National Register of Historic Places (NRHP). In addition to the above, the property is owned by the City of San Antonio. Compliance with the Antiquities Code of Texas was required. As such, the State Antiquities Code and Chapter 35 of the San Antonio Local Government Code that require coordination with the City Office of Historic Preservation and the Texas Historical Commission Divisions of Archaeology and Architecture govern the undertakings. CAR, therefore, conducted the work under Texas Antiquities Committee Permit No. 6526. Dr. Steve A. Tomka served as the Principal Investigator for the majority of the fieldwork, the initial analysis, and the description of materials collected. Kristi Nichols served as the Project Archaeologist during this initial monitoring and testing, assisted by Lindy Martinez. Both Dr. Tomka and Ms. Nichols left UTSA in 2014, and Dr. Raymond Mauldin assumed the Principal Investigator role for the project. Clinton McKenzie and Leonard Kemp were the Project Archaeologists for the final phases of monitoring, as well as for assembling the final report. Leonard Kemp oversaw additional test excavation. Trinomial 41BX2088 was assigned to the location. Principal activities during the project included monitoring trenches on the complex’s exterior, monitoring soil removal in sections of the interior, and hand excavations of a series of units in the basement. These basement excavations produced a variety of materials. CAR staff documented eight features, including several trash pits, recovered a variety of Spanish Colonial, Native American, and European/English ceramics, along with faunal material, chipped stone tools and debitage, and construction related items. It was concluded that much of this material was intact, and that additional features and midden deposits are present. The project provides direct evidence of materials associated with the Presidio de Bexar, built by the Spanish at this general location in 1722, as well as occupation in this area through the early twentieth century. CAR recommends that prior to any impacts in the basements, or any external impacts greater than 2.0 m in depth at the rear of the Plaza de Armas Buildings (Vogel Belt Complex), a comprehensive, systematic effort to recover significant data be initiated

    Mice Expressing Low Levels of CalDAG-GEFI Exhibit Markedly Impaired Platelet Activation With Minor Impact on HemostasisHighlights

    Get PDF
    OBJECTIVE: The tight regulation of platelet adhesiveness, mediated by the αIIbβ3 integrin, is critical for hemostasis and prevention of thrombosis. We recently demonstrated that integrin affinity in platelets is controlled by the guanine nucleotide exchange factor, CalDAG-GEFI (CD-GEFI), and its target, RAP1. In this study, we investigated whether low-level expression of CD-GEFI leads to protection from thrombosis without pathological bleeding in mice. APPROACH AND RESULTS: Cdg1(low) mice were generated by knockin of human CD-GEFI cDNA into the mouse Cdg1 locus. CD-GEFI expression in platelets from Cdg1(low) mice was reduced by ≈90% when compared with controls. Activation of RAP1 and αIIbβ3 was abolished at low agonist concentrations and partially inhibited at high agonist concentrations in Cdg1(low) platelets. Consistently, the aggregation response of Cdg1(low) platelets was weaker than that of wild-type platelets, but more efficient than that observed in Cdg1(-/-) platelets. Importantly, Cdg1(low) mice were strongly protected from arterial and immune complex-mediated thrombosis, with only minimal impact on primary hemostasis. CONCLUSIONS: Together, our studies suggest the partial inhibition of CD-GEFI function as a powerful new approach to safely prevent thrombotic complications

    Archaeological Investigations within San Pedro Springs Park (41BX19), San Antonio, Bexar County, Texas

    Get PDF
    The University of Texas at San Antonio Center for Archaeological Research (UTSA-CAR) contracted with Adams Environmental, Inc. to provide archaeological services to Capital Improvement Management (CIMS) of the City of San Antonio (COSA) related to the archaeological investigation of selected areas of San Pedro Springs Park in San Antonio, Bexar County, Texas. The CAR conducted archaeological testing at this National Register Site, 41BX19, from early December 2013 to mid-January of 2014. The goals of archaeological investigations were to identify and investigate any proto-historic and historic archaeological deposits associated with Colonial Period occupants of the area, including evidence of the first acequia and associated dam, and the location of the first presidio and villa. In addition, CAR was tasked with the investigation of any prehistoric cultural deposits encountered. This project was performed by staff archaeologists from the CAR. It was conducted under Texas Antiquities Permit No. 6727, with Dr. Steve Tomka serving as Principal Investigator (PI), and Kristi Nichols and Stephen Smith serving as Project Archaeologists. Dr. Tomka departed from UTSA shortly after the completion of fieldwork. At that time, Dr. Raymond Mauldin of CAR assumed PI responsibilities for the project. One hundred and eleven shovel tests, eleven 1-x-1 m test units, two 50-x-50 cm units, two backhoe trenches, and several auger holes were excavated during this effort. Minimal artifactual evidence of colonial occupants was noted during the archaeological investigations. Several Native American bone tempered sherds that could reflect either Late Prehistoric Leon Plain or Goliad ware were recovered. However, no Spanish Majolicas or lead glazed wares were uncovered, and no gunflints were identified in the lithic assemblage. Due to various utility lines and other obstructions, backhoe trenches to search for the acequia and associated dam could not be excavated. It is likely that areas proposed for investigation of the acequia and associated dam have been disturbed by aforementioned utility lines as well as earlier construction within the park. No evidence of the specific location of the first presidio or villa was located. Shovel testing and test units revealed the presence of historic and prehistoric use of the park, though mixing of historic and prehistoric material, as well as other disturbances (e.g., rodents), was common in the deposits. However, there was an increase in prehistoric material with depth as revealed in shovel testing results. Shovel testing located Feature 1, a burned rock feature that possibly was associated with a sheet midden, as well as several areas with high densities of prehistoric materials. Test excavations, based on these shovel tests, suggest that Feature 1 is a discrete feature that lies below a widespread, low-density distribution of burned rock. Shovel testing also identified a high-density cluster of lithic, bone, and burned rock. The excavation of a 1-x-1 m test unit (TU 4) in this area produced over 4,000 pieces of debitage, with over 50% of this total coming from three levels. Burned rock, a variety of tools, faunal material, and charcoal were present throughout these levels. Temporal placement of deposits relied on artifact typologies (e.g., ceramic types, lithic projectile points, lithic tool types) as well as two charcoal and four bone collagen radiocarbon dates. Artifact typologies suggest occupation as early as the Early Archaic as reflected by a possible Guadalupe tool. A series of Late Archaic Points (Castroville, Frio, Marcos, and Montell) and Late Prehistoric point forms (Edwards, Perdiz, and Scallorn) are present from several areas. In addition, a possible Middle Archaic La Jita point was recovered. The bone tempered Native American wares could date as early as AD 1250, though they could also reflect proto-historic or colonial age materials. Other ceramics primarily suggest a mid-nineteenth- to midtwentieth-century occupation. Using the midpoints of the 1-sigma distribution, calibrated radiocarbon dates show use of San Pedro Park from as early as 100 AD (CAR 345; 1905 +/- 22 Radiocarbon Years Before Present [RCYBP]) to as recently as the early twentieth century. The more recent end of that range is a function of two late dates from two different areas of the park. The first of these is on a bison bone (CAR 344) that returned a date of 158 +/- 23 RCYBP. The second is on a bone consistent with a bison-sized animal (CAR 346) that produced a date of 155 +/- 23 RCYBP. The corrected, calibrated dates for these two samples range from AD 1670 to the early 1940s using the 1-sigma spread. The wide range of these dates is related to the flat calibration curve late in time. However, the most probable date range (ca. 36% probability) for these two dates is between AD 1729 and 1779, with a roughly 48% probability that they date prior to AD 1779. Limited testing suggests that, with a few specific exceptions, the upper 30-40 cm of San Pedro Park is extensively disturbed. However, though some disturbances are present, at least three areas have materials in what appears to be good context. These include material dating to the Late Archaic, Late Prehistoric, and possibly the Proto-historic or Colonial Period. Based on historic maps, previous work, and the current investigation, CAR proposes a series of management areas for San Pedro Park. If work in these management areas follows these suggestions for various limits on subsurface impacts, CAR recommends that. renovation activities within the park be allowed to proceed. The Texas Historical Commission (THC), in a letter dated February 4, 2015, agreed with these recommendations. Finally, CAR provides several recommendations for public education facilities within the park. In accordance with the THC Permit specifications and the Scope of Work for this project, all field notes, analytical notes, photographs, and other project related documents, along with a copy of the final report, will be curated at the CAR. After quantification and completion of analysis, and in consultation with THC and the COSA Office of Historic Preservation, artifacts possessing little scientific value were discarded pursuant to Chapter 26.27(g)(2) of the Antiquities Code of Texas. Artifact classes discarded specific to this project included samples of burned rock and snail shell, all unidentifiable metal, soil samples, and recent (post-1950) material

    Morphology and density of post-CME current sheets

    Full text link
    Eruption of a coronal mass ejection (CME) drags and "opens" the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and the field relaxation by magnetic reconnection. We analyze physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to check if the interpretation of this phenomenon in terms of reconnecting current sheet is consistent with the observations. The study is focused on measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of rays indicates that they occur as a consequence of Petschek-like reconnection in the large scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km s1^{-1}, consistent with the narrow opening-angle of rays, adding up to a few degrees. The density of rays is an order of magnitude larger than in the ambient corona. The density-excess measurements are compared with the results of the analytical model in which the Petschek-like reconnection geometry is applied to the vertical current sheet, taking into account the decrease of the external coronal density and magnetic field with height. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to larger heights by the reconnection outflow
    corecore