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Abstract

Objective—The tight regulation of platelet adhesiveness, mediated by the αIIbβ3 integrin, is 

critical for hemostasis and prevention of thrombosis. We recently demonstrated that integrin 

affinity in platelets is controlled by the guanine nucleotide exchange factor, CalDAG-GEFI (CD-

GEFI), and its target, RAP1. In this study, we investigated whether low-level expression of CD-

GEFI leads to protection from thrombosis without pathological bleeding in mice.

Approach and Results—Cdg1low mice were generated by knock-in of human CD-GEFI cDNA 

into the mouse Cdg1 locus. CD-GEFI expression in platelets from Cdg1low mice was reduced by 

~90% when compared to controls. Activation of RAP1 and αIIbβ3 was abolished at low agonist 

concentrations and partially inhibited at high agonist concentrations in Cdg1low platelets. 

Consistently, the aggregation response of Cdg1low platelets was weaker than that of wild-type 

(WT) platelets, but more efficient than that observed in Cdg1−/− platelets. Importantly, Cdg1low 

mice were strongly protected from arterial and immune complex-mediated thrombosis, with only 

minimal impact on primary hemostasis.
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Conclusion—Together, our studies suggest the partial inhibition of CD-GEFI function as a 

powerful new approach to safely prevent thrombotic complications.

GRAPHICAL ABSTRACT
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INTRODUCTION

Platelet aggregate formation, mediated by activated integrin αIIbβ3, is critical for 

hemostasis upon tissue injury. Excessive platelet activation and aggregation, however, can 

lead to thrombotic complications, such as heart attack and stroke1, 2. The signaling events 

required for platelet integrin activation are initiated by engagement of surface-expressed 

receptors for agonists such as thrombin and/or collagen3. These agonists trigger a first wave 

of platelet signaling that includes a rapid increase in the cytosolic calcium concentration 

([Ca2+]i). This increase in [Ca2+]i leads to activation of the calcium-binding guanine 

nucleotide exchange factor, CalDAG-GEFI (CD-GEFI; RASGRP2), a key regulator of the 

small GTPase RAP14. RAP1 controls various platelet responses important for hemostatic 

plug formation, including the inside-out activation of integrin receptors5, 6. In the absence of 

additional signals, CD-GEFI-mediated RAP1 signaling is terminated by the GTPase-

activating protein (GAP), RASA37. The signal for RASA3 inactivation and sustained RAP1 

signaling is provided by stimulation via P2Y12, the receptor for the second-wave mediator 

ADP and the target for various clinically used anti-platelet drugs8, 9.

Work by us and others provided important mechanistic information on how interference with 

RAP1 signaling affects platelet adhesion at sites of vascular injury. Mice deficient in the 

main RAP1 isoform, RAP1B, exhibit marked defects in platelet aggregation to various 

agonists in vitro and impaired hemostasis and thrombosis in vivo10, 11. As outlined above, 

the activity state of RAP1 in platelets is controlled by CD-GEFI and RASA34, 7. Active 

Rasa3 is required to keep circulating platelets in a quiescent state7. During hemostatic plug 

formation, its activity must be down-modulated as part of the P2Y12/PI3 kinase signaling 

pathway in order for stable platelet adhesion to occur. Consistently, mice lacking RASA3 are 

characterized by severe thrombocytopenia due to platelet pre-activation and clearance7, 

while both hemostatic plugs and pathological thrombi in mice lacking P2Y12 function are 

Piatt et al. Page 2

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



highly unstable9, 12. In contrast, RAP1 activation in platelets from mice lacking CD-GEFI 

occurs with a delay and requires higher doses of strong agonists, such as thrombin and 

collagen. Under flow conditions in vitro, platelets lacking CD-GEFI (Cdg1−/−) are markedly 

impaired in their ability to form three-dimensional thrombi, especially under conditions of 

high shear stress12. Consistent with the in vitro phenotype, Cdg1−/− mice are strongly 

protected from both immune-mediated thrombocytopenia and thrombosis (ITT) and arterial 

thrombosis, but they also show a marked defect in hemostatic plug formation12, 13.

Importantly, the main findings in Cdg1−/− mice were recently confirmed in three patients 

with a loss-of-function mutation in CD-GEFI. In their studies, Canault et al., found that 

platelets from heterozygous patients, who did not show defects in hemostasis, exhibited a 

significant adhesive defect under flow conditions14. Thus, the various studies in knockout 

mice and patients suggest partial inhibition of CD-GEFI as a powerful yet safe strategy to 

prevent thrombosis. In the present study, we describe a hypomorphic mouse strain 

expressing low levels of human CD-GEFI (Cdg1low) instead of the endogenous mouse CD-

GEFI. Platelets from Cdg1low mice showed decreased platelet activation when compared to 

WT controls. Importantly, however, their integrin activation response was significantly 

stronger than that of Cdg1−/− mice. Consistent with the in vitro integrin activation 

phenotype, Cdg1low mice exhibited only a mild defect in primary hemostasis while they 

were strongly protected from experimental thrombosis.

MATERIALS AND METHODS

Materials and Methods are available in the online-only Data Supplement

RESULTS

Generation of hypomorphic Cdg1 mutant mice

The platelet and hemostasis phenotype of Cdg1−/− mice has been characterized extensively. 

To investigate the regulation of CD-GEFI function in platelets by genetic means, we aimed 

to establish a cDNA knock-in model where WT or mutant human Cdg1 cDNA is knocked 

into the murine Cdg1 locus (Figure 1). We selected to express human CD-GEFI variants in 

mice, as (1) there is 96% and 100% amino acid sequence identity between human and 

murine CD-GEFI and RAP1B, respectively, and (2) this approach would allow us to evaluate 

the ability of human CD-GEFI variants to support platelet activation and plug formation in 

mice. We noticed, however, that the cDNA knock-in of human Cdg1 led to markedly 

reduced expression of CD-GEFI protein in platelets isolated from these mice (~90% 

reduction compared to controls) (Figure 2A), while the expression of RASA3, RAP1, or β-

ACTIN was not affected. Just like Cdg1−/− mice4, these Cdg1low mice exhibited a small but 

significant increase in circulating neutrophils, but they did not exhibit changes in the 

peripheral platelet count or the platelet size (Table 1). However, compared to WT controls, 

platelets from Cdg1low mice showed marked defects in RAP1 activation in response to 

agonist stimulation (Figure 2B). Thus, cDNA knock-in of human Cdg1 strongly reduced 

platelet CD-GEFI expression and thus led to the generation of hypomorphic Cdg1 mutant 

mice.
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Impaired integrin activation and aggregation of Cdg1low platelets

Consistent with the defect in RAP1 activation, platelets from Cdg1low mice were markedly 

impaired in their ability to activate αIIbβ3 integrin (Figure 3A, C, E) and to aggregate when 

stimulated with various doses of Par4 activating peptide (Par4p, Figure 4 A, B), the collagen 

mimetic convulxin (Cvx, Figure 4 C, D), or ADP (Figure 4, E, F). Cdg1low platelets also 

showed a significant defect in α-granule release in response to activation with Par4p (Figure 

3B) or Cvx (Figure 3D). Importantly, however, integrin activation, granule release and 

aggregation were significantly increased in Cdg1low platelets when compared to platelets 

from Cdg1−/− mice. Thus, expression of low levels of human CD-GEFI partially rescued 

integrin activation in platelets from mice lacking endogenous CD-GEFI. We next 

investigated whether this increase in integrin function translated to improved platelet 

adhesion to collagen under flow conditions. As expected, platelets in Cdg1low blood 

exhibited markedly impaired adhesive function when compared to WT controls (Figure 5). 

However, both platelet accumulation and platelet coverage of the collagen surface were 

significantly higher in Cdg1low blood when compared to the Cdg1−/− sample, both under 

low (Figures 5 A,B,C) and high (Figures 5 D,E,F) shear stress conditions. As shown in 

Figures 5C and F, Cdg1low platelets only formed three-dimensional thrombi when perfused 

over collagen at low shear conditions, confirming our previous observations that CD-GEFI is 

particularly important for platelet adhesion under arterial shear stress conditions12.

Cdg1low mice show mild defect in hemostasis

A loss-of-function mutation or genetic knockout of Cdg1 leads to moderate to severe 

bleeding upon challenge in humans14 and mice4, 12, respectively. It is important to note, 

however, that, unlike mice deficient in the integrin adapters talin-1 or kindlin-315, 16, 

complete deficiency in CD-GEFI does not lead to perinatal bleeding and increased mortality. 

Consistent with these findings, Cdg1low mice showed no signs of perinatal bleeding or 

reduced viability (not shown). To evaluate hemostasis, we subjected Cdg1low mice to a 

model of precise laser-induced injury to the saphenous vein17 as well as the more widely 

used tail bleeding time assay. Injuries in the saphenous vein bleeding model are small 

(<100µm in diameter) and thus can be imaged and analyzed by intravital microscopy for 

platelet adhesion (Figures 6A,B) and time to hemostatic plug formation (Figures 6A,C) (also 

see supplemental videos 1,2, and 3). Compared to WT controls, both platelet adhesion and 

hemostasis were markedly impaired in Cdg1−/− mice. A significant reduction in platelet 

adhesion and a delay in hemostatic plug formation were also observed in Cdg1low mice. 

However, while Cdg1−/− mice bled for the entire observation period (300 sec), hemostasis 

was achieved within about 80 seconds in Cdg1low mice. The delay in hemostatic plug 

formation observed in Cdg1low mice correlated well with a delay in platelet adhesion at the 

site of laser injury. Consistent with the findings in this small injury hemostasis model, we 

also observed markedly decreased blood loss from severed tails of Cdg1low mice when 

compared to Cdg1−/− mice (Figure 6D). In fact, blood loss in Cdg1low mice was not 

significantly higher than that in WT control mice, even though we observed continuous 

“oozing” of very small amounts of blood from the transected tails of about 60% of Cdg1low 

mice (Figure 6E). Together, these studies suggest that expression of ~10% of CD-GEFI in 

platelets is sufficient to maintain hemostasis in mice.
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Cdg1low mice are strongly protected from experimental thrombosis

Mice lacking CD-GEFI are strongly protected from arterial thrombosis and ITT12, 13. Given 

their minor hemostatic defect, we were curious to see whether Cdg1low mice were still 

protected from experimental thrombosis. Similar to Cdg1−/− mice, Cdg1low mice did not 

form occlusive thrombi in a model of FeCl3-induced injury to the carotid artery (Figure 

7A,B). In this model, vascular occlusion is defined as a reduction of blood flow by >75%, 

caused by the formation of a large thrombus. Since thrombus formation was not directly 

visualized in this model, we were not able to compare platelet adhesion to sites of FeCl3 

injury between WT, Cdg1−/− and Cdg1low mice. We did, however, visualize platelet 

adhesion in the laser injury hemostasis model (Figure 6A, supplemental videos 1–3). In WT 
mice, hemostatic plug formation was characterized by a first phase of rapid growth that was 

followed by “pacification” of the thrombus, i.e. the shrinking of the thrombus down to a core 

region. The observed kinetics of platelet adhesion to sites of laser injury in WT mice are 

consistent with studies by Brass and colleagues, who demonstrated that thrombus 

pacification is due to the reversible binding of weakly activated platelets in the shell region 

of the thrombus18. Interestingly, thrombi in Cdg1low mice were markedly smaller and did 

not seem to contain a shell region. Thus, it is likely that Cdg1low mice formed very small 

platelet thrombi at sites of FeCl3 injury, but that these thrombi cannot grow big enough to 

impede the blood flow in this high shear stress environment.

We also subjected Cdg1low mice to a recently established model of ITT13. In this model, 

platelet activation and pulmonary embolism is triggered via FcγRIIA, a receptor that is 

expressed on human but not murine platelets. To circumvent this limitation, these studies 

were performed with transgenic mice expressing human FcγRIIA19. Fcr2a-tg and 

Cdg1lowFcr2a-tg mice were injected with an antibody against GPIX, a subunit of the platelet 

Von Willebrand receptor complex. As shown recently, anti-GPIX antibody treatment of mice 

leads to platelet activation and pulmonary embolism in an FcγRIIA-dependent fashion13. 

Consistent with previous results, injection of anti-GPIX antibody into Fcr2a-tg mice led to a 

>80% decrease in the peripheral platelet count (Figure 7C) and the formation of large 

pulmonary emboli (Figures 7D,E). In contrast, the peripheral platelet count in 

Cdg1lowFcr2a-tg mice injected with anti-GPIX antibody dropped by only ~30% and platelet 

accumulation in the lungs was dramatically decreased compared to Fcr2a-tg mice.

DISCUSSION

Current strategies to prevent excessive platelet activation and arterial thrombosis include 

inhibitors of the main platelet integrin, αIIbβ3, and drugs targeting feedback signaling by 

ADP and TxA2 (P2Y12 antagonists and aspirin; also known as dual anti-platelet therapy – 

DAPT20, 21). αIIbβ3 antagonists provide very powerful protection from thrombosis but also 

markedly increase the patients’ risk for pathological bleeding. In comparison, DAPT 

provides weaker protection from thrombosis but is safer with regard to unwanted bleeding. 

To provide a significant improvement over existing therapies, the next generation of anti-

platelet drugs should be as effective as αIIbβ3 inhibitors in preventing thrombosis, but with 

a safety (bleeding) profile similar or better than that of DAPT.
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Here we report that mice expressing small amounts of CD-GEFI are strongly protected from 

arterial and immune complex-mediated thrombosis. Importantly, as compared to Cdg1−/− 

mice, this protection in Cdg1low mice does not come at the expense of a deficient hemostatic 

response. Thus, small amounts of functional CD-GEFI are sufficient to preserve most of the 

hemostatic function of platelets, but not sufficient for the formation of pathological thrombi. 

This phenotype is similar to that of mice with impaired, but not abolished, expression/

function of the integrin adapter proteins, TALIN-122 or KINDLIN-323. In all cases αIIbβ3-

mediated platelet aggregation is delayed, allowing for the formation of small hemostatic 

plugs. If confirmed in humans, these findings would suggest TALIN-1, KINDLIN-3, and 

CD-GEFI as promising new targets for anti-platelet therapy. Compared to TALIN and 

KINDLIN, however, CD-GEFI may be a preferred target as (1) its expression is largely 

confined to platelets and neutrophils, and (2) mice deficient in talin-115 or kindlin-316, but 

not Cdg1−/− mice exhibit spontaneous bleeding and high perinatal mortality. Interestingly, 

impaired platelet function and bleeding upon challenge are the main phenotypes of dogs24 

and humans14, 25 lacking functional CD-GEFI, suggesting that neutrophil function is less 

dependent on the CD-GEFI/RAP1 signaling pathway. Our work in Cdg1−/− mice identified 

significant defects in neutrophil integrin activation and adhesion26, but these defects were 

mild when compared to those observed in knockout platelets or those in neutrophils lacking 

kindlin-327. As neutrophils are known modulators of experimental thrombosis28, however, 

studies in mice lacking CD-GEFI in platelets or neutrophils only will be required to 

determine whether impaired neutrophil function contributes to the anti-thrombotic 

phenotype observed in CD-GEFI mutant mice.

Based on our studies, we propose that targeting CD-GEFI could provide certain advantages 

over existing antiplatelet therapies. While P2Y12 inhibitors affect the sustained activation of 

RAP1 and thus protect from thrombosis by destabilizing existing thrombi12, lack of 

functional CD-GEFI delays platelet activation and impairs thrombus formation in 

mice4, 12, 29 and humans14, 25. CD-GEFI also plays a critical role for ITAM-dependent 

platelet activation29, and both knockout12, 13, 30 and Cdg1low mice are strongly protected 

from arterial and IC-mediated thrombosis. Thus, inhibitors of CD-GEFI are expected to 

provide significantly better protection from thrombosis than drugs targeting P2Y12. 

Obviously, CD-GEFI inhibitors would have to be carefully monitored in patients, as 

complete lack of function in this protein is associated with a marked bleeding risk in humans 

and mice8, 9, 12, 14, 25. Alternatively, smarter strategies to inhibit CD-GEFI function could be 

developed. For example, our recent work demonstrated that deletion of the C1 regulatory 

domain in CD-GEFI leads to an ~70% reduction in GEF activity12. If we succeed in 

identifying how the C1 domain contributes to CD-GEFI function, inhibitors could be 

developed that specifically target this regulatory domain. Such inhibitors would not need to 

be titrated in patients as complete inhibition of CD-GEFI could not be achieved with such an 

approach. Lastly, inhibitors to CD-GEFI could be used as a safer alternative to αIIbβ3 

inhibitors currently used in high-risk patients. The studies reported here combined with our 

previous work suggest that the antithrombotic effect of a putative CD-GEFI inhibitor would 

be comparable to that of αIIbβ3 inhibitors – but at a lower risk for bleeding.

In summary, we provide evidence that low-level expression of CD-GEFI leads to protection 

from thrombosis, but not to marked bleeding, in mice. Based on these findings, we propose 
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that specific targeting of CD-GEFI would provide a significant improvement over clinically 

used anti-platelet therapies, such as αIIbβ3 inhibitors and DAPT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Low level expression of CalDAG-GEFI is sufficient for the hemostatic 

function of platelets

• Mice expressing low levels of CalDAG-GEFI are fully protected from 

experimental thrombosis

• Partial inhibition of CalDAG-GEFI may provide a powerful yet safe 

approach to prevent thrombosis
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Figure 1. Generation of a CalDAG-GEFI humanized mouse model
(A) Schematic of human CalDAG-GEFI knock-in strategy. A gene targeting vector was 

constructed to insert the human CalDAG-GEFI cDNA at the start codon of the mouse 

CalDAG-GEFI locus with a copy of the mouse 3’UTR/polyadenylation sequence placed 

immediately downstream of the human cDNA. A FRT-flanked PGK-Neo resistance cassette 

was placed downstream of the expression cassette, followed by an additional 

polyadenylation signal. Lox71 and Lox2272 sites were inserted flanking the cDNA cassette 

and selectable marker to allow replacement of the cassette by recombinase-mediated cassette 

exchange strategy. Positions of forward and reverse genotyping primers are indicated along 

with the size of PCR products to be obtained from the wild-type and knock-in alleles. (B) 

PCR genotyping of animals. Primers shown in panel A were used to amplify DNA from 

wild-type (wt/wt), heterozygous knock-in (wt/tg) and homozygous knock-in (tg/tg) mice.
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Figure 2. Markedly reduced expression of CD-GEFI in hypomorphic mice (Cdg1low)
A) Representative Western blots for CD-GEFI, RASA3, RAP1, and β-ACTIN in platelet 

lysates from WT, Cdg1−/−, and Cdg1low mice. B) RAP1-GTP levels (top panel) in WT, 

Cdg1−/−, and Cdg1low platelets left unstimulated (C) or activated with PAR4 peptide for 30” 

or 3’. Total RAP1 is provided as a loading control (bottom panel). Results are representative 

of 3 independent experiments.

Piatt et al. Page 12

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Improved integrin activation in Cdg1low compared to Cdg1−/− platelets
(A-E) αIIbβ3 integrin activation and alpha granule release. JON/A-PE (A,C,E) and anti-P-

selectin Alexa Fluor 488 (B,D) binding to platelets from the indicated mice, activated with 

various concentrations of PAR4p (A,B), convulxin (Cvx; C,D), or ADP (E). Data are shown 

as mean fluorescence intensity (MFI) ± SEM; n=4–6, *p<0.05, **p<0.01, ***p<0.001; # 

p<0.05, # #p<0.01, ### p<0.001 relative to resting controls, analyzed by two-way ANOVA 

with a Bonferonni post test.

Piatt et al. Page 13

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Intermediate aggregation response of Cdg1low platelets compared to controls
(A-F) Representative aggregometry traces for WT (black line), Cdg1−/− (light grey), and 

Cdg1low (dark grey) platelets activated with the indicated agonists. Aggregometric responses 

to 75 (A) and 150 (B) µM Par4p, 100 (C) and 200 (D) ng/mL convulxin, and 3 (E) and 10 

(F) µM ADP.

Piatt et al. Page 14

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Improved platelet adhesion to collagen of Cdg1low compared to Cdg1−/− platelets
Whole blood from WT (black bars), Cdg1low (dark grey), and Cdg1−/− mice (light grey bars) 

was perfused for 5 minutes over fibrillar collagen (200 µg/mL) at venous (400 s−1, A-C) or 

arterial (1600 s−1, D-F) shear rates. Platelets were labeled with Alexa Fluor 488-labeled 

antibodies to GPIX before perfusion. At the end of the perfusion period, fluorescence 

images (C,F) were taken and the sum intensity (A,D) and the surface area coverage (B,E) 

were determined. Fluorescence intensities were normalized to the maximum intensity 

measured in WT control samples (Relative Fluorescence). Area coverage represents the area 
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in the field of view covered by fluorescently labeled platelets. Data are shown as mean ± 

SEM, (n = 5) *p<0.05, **p<0.01, ***p<0.001. Images taken on a Nikon TE300 equipped 

with a QImaging Retiga Exi CCD camera, 20x/0.5 magnification, Alexa Fluor 488-labeled 

GPIX, Slidebook 5.0 Software at room temperature.
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Figure 6. Improved hemostasis in Cdg1low compared to Cdg1−/− mice
(A-C) Intravital microscopy studies to monitor hemostatic plug formation after laser injury 

to the saphenous vein in WT (black; also see Supplemental Video 1), Cdg1−/− (light grey; 

also see Supplemental Video 2), and Cdg1low mice (dark grey; also see Supplemental Video 

3). Prior to laser injury, animals were injected with Alexa Fluor 488–labeled antibodies to 

GPIX. (A) Representative images taken 90 seconds after laser injury. Arrow highlights blood 

loss at the site of injury in Cdg1−/− mice. Scale bar: 100 µm. (B) Sum fluorescence intensity 

± SEM recorded at the site of injury over time in the indicated mice (n = 5–11). (C) Time to 

stable occlusion (no leakage of blood for more than 60 seconds) of the vascular lesion in the 

indicated mice. Recordings were stopped 300 seconds after laser injury. (D,E) Blood loss 

(D) and bleeding times (E) in WT (black circle), Cdg1−/− (light gray square), and Cdg1low 

(dark gray triangle) mice after tail transection. ** P<0.01 ***P < 0.001, Chi-square test was 

performed between groups (n= 10 (WT), 10 (Cdg1−/−), 10 (Cdg1low)). Images were taken on 
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a Zeiss Examiner Z1 equipped with a Hamamatsu C9300 camera, 20x/1 magnification, 

Alexa Fluor 488-labeled GPIX, Slidebook 5.0 Software at room temperature.
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Figure 7. Cdg1low mice are protected from FeCl3- and immune mediated thrombosis
(A) Representative blood flow velocity traces recorded after exposure of the carotid artery of 

a WT (black line), Cdg1−/− (light grey), or Cdg1low (dark grey) mouse to 20% FeCl3 for 1 

minute. A decrease in blood flow by > 75% (dotted line) was considered as complete vessel 

occlusion. (B) Time to occlusion recorded in individual WT (black circle, n=6), Cdg1−/− 

(light gray square, n=5), and Cdg1low mice (dark gray triangle, n=5). (C) Platelet counts in 

whole blood of Fcr2a-tg control and Cdg1lowFcr2a-tg mice 4 hours after administration of 1 

µg/g body weight of α-GPIX-IRDye800 antibody. Platelet counts are expressed as 

percentage of baseline value. (D,E) Four hours after antibody infusion, lungs were extracted 

and scanned on a Li-COR Odyssey at 800 nm. (D) Quantitative analysis of the integrated 

fluorescence intensity (ImageStudio Lite 4.0). Results are shown as arbitrary fluorescence 

intensity (a.u.) ± SEM normalized to Fcr2a-tg controls; n = 5. Fcr2a-tg (black bar), 

Cdg1lowFcr2a-tg (gray bar). (E) Representative images. *p<0.05, ***p<0.001.
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Table 1

Blood Cell Analysis

Wild Type Cdg1−/− Cdg1low

Platelet Count, K/μL 956 ± 304 906 ± 258 1198 ± 356

Mean Platelet Volume, fL 4.33 ± 0.122 4.189 ± 0.127 4.411 ± 0.136

Neutrophil Count, K/μL 0.70 ± 0.41 2.30 ± 0.757*** 1.67 ± 0.7443*

Monocyte Count, K/μL 0.96 ± 0.35 1.584 ± 0.51* 1.231 ± 0.55

Lymphocyte Count, K/μL 7.807 ± 2.92 10.06 ± 1.82 9.033 ± 2.35

Erythrocyte Count, M/μL 12.92 ± 2.26 12.87 ± 1.95 14.43 ± 4.00

Hemoglobin, g/dL 17.89 ± 2.74 19.04 ± 2.79 18.84 ± 3.26

Circulating blood cell analysis. Data are reported as mean ± SD.

*
P < 0.05,

***
P < 0.0001 as compared to wild type control. (n=9)
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