3,257 research outputs found

    Cloud microphysical effects of turbulent mixing and entrainment

    Full text link
    Turbulent mixing and entrainment at the boundary of a cloud is studied by means of direct numerical simulations that couple the Eulerian description of the turbulent velocity and water vapor fields with a Lagrangian ensemble of cloud water droplets that can grow and shrink by condensation and evaporation, respectively. The focus is on detailed analysis of the relaxation process of the droplet ensemble during the entrainment of subsaturated air, in particular the dependence on turbulence time scales, droplet number density, initial droplet radius and particle inertia. We find that the droplet evolution during the entrainment process is captured best by a phase relaxation time that is based on the droplet number density with respect to the entire simulation domain and the initial droplet radius. Even under conditions favoring homogeneous mixing, the probability density function of supersaturation at droplet locations exhibits initially strong negative skewness, consistent with droplets near the cloud boundary being suddenly mixed into clear air, but rapidly approaches a narrower, symmetric shape. The droplet size distribution, which is initialized as perfectly monodisperse, broadens and also becomes somewhat negatively skewed. Particle inertia and gravitational settling lead to a more rapid initial evaporation, but ultimately only to slight depletion of both tails of the droplet size distribution. The Reynolds number dependence of the mixing process remained weak over the parameter range studied, most probably due to the fact that the inhomogeneous mixing regime could not be fully accessed when phase relaxation times based on global number density are considered.Comment: 17 pages, 10 Postscript figures (figures 3,4,6,7,8 and 10 are in reduced quality), to appear in Theoretical Computational Fluid Dynamic

    Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles

    Get PDF
    During the measurement campaign FROST 2 (FReezing Of duST 2), the Leipzig Aerosol Cloud Interaction Simulator (LACIS) was used to investigate the influence of various surface modifications on the ice nucleating ability of Arizona Test Dust (ATD) particles in the immersion freezing mode. The dust particles were exposed to sulfuric acid vapor, to water vapor with and without the addition of ammonia gas, and heat using a thermodenuder operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diameter of 300 nm were fed into LACIS and droplets grew on these particles such that each droplet contained a single particle. Temperature dependent frozen fractions of these droplets were determined in a temperature range between −40 °C ≤T≤−28 °C. The pure ATD particles nucleated ice over a broad temperature range with their freezing behavior being separated into two freezing branches characterized through different slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with sulfuric acid resulted in the particles' IN potential significantly decreasing in the first freezing branch (T>−35 °C) and a slight increase in the second branch (T≤−35 °C). The addition of water vapor after the sulfuric acid coating caused the disappearance of the first freezing branch and a strong reduction of the IN ability in the second freezing branch. The presence of ammonia gas during water vapor exposure had a negligible effect on the particles' IN ability compared to the effect of water vapor. Heating in the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles for both branches but the additional heat did not or only slightly change the IN ability of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other words, the combination of both sulfuric acid and water vapor being present is a main cause for the ice active surface features of the ATD particles being destroyed. A possible explanation could be the chemical transformation of ice active metal silicates to metal sulfates. The strongly enhanced reaction between sulfuric acid and dust in the presence of water vapor and the resulting significant reductions in IN potential are of importance for atmospheric ice cloud formation. Our findings suggest that the IN concentration can decrease by up to one order of magnitude for the conditions investigated

    Improved navigator-gated motion compensation in cardiac MR using additional constraint of magnitude of motion-corrupted data

    Get PDF
    Background. In conventional prospective respiratory navigator (NAV) acquisitions, 40-60% of the acquired data are discarded resulting in low efficiency and long scan times [1,2].Compressed-sensing Motion Compensation (CosMo) has a shorter fixed scan time by acquiring the full inner k-space and estimating the NAV-rejected outer k-space lines [3]. Respiratory motion will mainly manifest itself as phase variation in the acquired k-space data. We sought to determine if the addition of the magnitude of the rejected k-space lines as a constraint in image reconstruction will improve the performance of CosMo. Methods. To investigate the variability of the magnitude of kspace lines at different respiratory phases, free-breathing, ECG-triggered, targeted right coronary images with multiple averages were acquired from 10 healthy adult subjects. Magnitude variability was investigated quantitatively by calculating the cross-correlation between accepted and rejected k-space lines. CosMo was implemented retrospectively on one acquisition from each subject. The inner k-space (31 ky by 7 kz lines) was filled with lines acquired within the 5mm gating window from all acquisitions. The outer kspace was then filled only with lines from the first average acquired within the 5 mm gating window, resulting in an undersampled k-space with a fully sampled center. For reliable image reconstruction with CosMo, 10-20% of the inner k-space must be fully-sampled. The missing outer k-space lines were then estimated using LOST with an additional magnitude constraint within each estimation iteration or in the final iteration for each coil [4]. The results were compared with prospective NAVgating with a gating window of 5 mm and CosMo reconstruction without the magnitude constraint. Results. Figure 1 shows the cross-correlation between the accepted and worst rejected k-space lines for each position. The correlation is close to 1 at the center of kspace where the majority of image information is contained, indicating low variability in magnitude information at different respiratory phases. Figure 2 shows right coronary images acquired using a) fully-sampled, 5-mm gated data, b) the original CosMo, and CosMo with the additional magnitude constraint c) inside each iteration and d) in the final iteration. The relative signal-to-noise in the left ventricle blood pool is: 30.71±6.5;40.32±14.2;53.9±26.8;56.8±25.930.71 \pm 6.5; 40.32 \pm 14.2; 53.9 \pm 26.8; 56.8 \pm 25.9 for each reconstruction, respectively. Significant differences (p<0.05) are present for all measurements except between the original CosMo and the CosMo image with the magnitude constraint in each iteration (p=0.09). Conclusions. The addition of the magnitude of rejected lines, readily available in all navigator-gated scans, as a constraint in CosMo results in improved image quality as measured by relative SNR. Funding. NIH R01EB008743-01A2

    First optical detection from the supernova remnant G 15.1-1.6

    Full text link
    Deep optical CCD images of the supernova remnant G 15.1-1.6 were obtained and filamentary and diffuse emission has been discovered. The images, taken in the emission lines of Halpha+[N II], [S II] and [O III], reveal filamentary and diffuse structures all around the remnant. The radio emission at 4850 MHz in the same area is found to be well correlated with the brightest optical filaments. The IRAS 60 micron emission may also be correlated with the optical emission but to a lesser extent. The flux calibrated images suggest that the optical emission originates from shock-heated gas ([S II]/Halpha > 0.4), while there is a possible HII region ([S II]/Halpha ~0.3) contaminating the supernova remnant's emission to the east. Furthermore, deep long-slit spectra were taken at two bright filaments and also show that the emission originates from shock heated gas. An [O III] filamentary structure has also been detected further to the west but it lies outside the remnant's boundaries and possibly is not associated to it. The [O III] flux suggests shock velocities into the interstellar "clouds" ~100 km/s, while the [S II] 6716/6731 ratio indicates electron densities up to ~250 cm^{-3}. Finally, the Halpha emission has been measured to be between 2 to 7 x 10^{-16} erg/s/cm^2/arcsec^2, while the lower limit to the distance is estimated at 2.2 kpc.Comment: 12 pages, 6 figures, 3 tables. Accepted for pubication in A&

    Scar heterogeneity on cardiovascular magnetic resonance as a predictor of appropriate implantable cardioverter defibrillator therapy

    Get PDF
    Background: Despite the survival benefit of implantable-cardioverter-defibrillators (ICDs), the vast majority of patients receiving an ICD for primary prevention do not receive ICD therapy. We sought to assess the role of heterogeneous scar area (HSA) identified by late gadolinium enhancement cardiovascular magnetic resonance (LGE-CMR) in predicting appropriate ICD therapy for primary prevention of sudden cardiac death (SCD). Methods: From September 2003 to March 2011, all patients who underwent primary prevention ICD implantation and had a pre-implantation LGE-CMR were identified. Scar size was determined using thresholds of 4 and 6 standard deviations (SD) above remote normal myocardium; HSA was defined using 3 different criteria; as the region between 2 SD and 4 SD (HSA2-4SD), between 2SD and 6SD (HSA2-6SD), and between 4SD and 6SD (HSA4-6SD). The end-point was appropriate ICD therapy. Results: Out of 40 total patients followed for 25 ± 24 months, 7 had appropriate ICD therapy. Scar size measured by different thresholds was similar in ICD therapy and non-ICD therapy groups (P = NS for all). However, HSA2-4SD and HSA4-6SD were significantly larger in the ICD therapy group (P = 0.001 and P = 0.03, respectively). In multivariable model HSA2-4SD was the only significant independent predictor of ICD therapy (HR = 1.08, 95%CI: 1.00-1.16, P = 0.04). Kaplan-Meier analysis showed that patients with greater HSA2-4SD had a lower survival free of appropriate ICD therapy (P = 0.026). Conclusions: In primary prevention ICD implantation, LGE-CMR HSA identifies patients with appropriate ICD therapy. If confirmed in larger series, HSA can be used for risk stratification in primary prevention of SCD

    Cloud System Evolution in the Trades (CSET): Following the Evolution of Boundary Layer Cloud Systems with the NSFNCAR GV

    Get PDF
    The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the North Pacific trade winds. The study centered on seven round trips of the National Science FoundationNational Center for Atmospheric Research (NSFNCAR) Gulfstream V (GV) between Sacramento, California, and Kona, Hawaii, between 7 July and 9 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. Global Forecast System forecast trajectories were used to plan the outbound flight to Hawaii with updated forecast trajectories setting the return flight plan two days later. Two key elements of the CSET observing system were the newly developed High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) and the high-spectral-resolution lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud, and precipitation structures that were combined with in situ measurements of aerosol, cloud, precipitation, and turbulence properties. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale cloudprecipitation complexes, and patches of shallow cumuli in very clean environments. Ultraclean layers observed frequently near the top of the boundary layer were often associated with shallow, optically thin, layered veil clouds. The extensive aerosol, cloud, drizzle, and boundary layer sampling made over open areas of the northeast Pacific along 2-day trajectories during CSET will be an invaluable resource for modeling studies of boundary layer cloud system evolution and its governing physical processes

    Associations between fruit intake and risk of diabetes in the AusDiab cohort

    Get PDF
    Context Fruit, but not fruit juice, intake is inversely associated with type 2 diabetes mellitus (T2DM). However, questions remain about the mechanisms by which fruits may confer protection. Objective The aims of this work were to examine associations between intake of fruit types and 1) measures of glucose tolerance and insulin sensitivity and 2) diabetes at follow-up. Methods Among participants of the Australian Diabetes, Obesity and Lifestyle Study, fruit and fruit juice intake was assessed by food frequency questionnaire at baseline. Associations between fruit and fruit juice intake and 1) fasting plasma glucose, 2-hour postload plasma glucose, updated homeostasis model assessment of insulin resistance of β-cell function (HOMA2-%β), HOMA2 of insulin sensitivity (HOMA2-%S), and fasting insulin levels at baseline and 2) the presence of diabetes at follow-up (5 and 12 years) were assessed using restricted cubic splines in logistic and linear regression models. Results This population of 7675 Australians (45% males) had a mean ± SD age of 54 ± 12 years at baseline. Total fruit intake was inversely associated with serum insulin and HOMA2-%β, and positively associated with HOMA2-%S at baseline. Compared to participants with the lowest intakes (quartile 1), participants with moderate total fruit intakes (quartile 3) had 36% lower odds of having diabetes at 5 years (odds ratio, 0.64; 95% CI, 0.44-0.92), after adjusting for dietary and lifestyle confounders. Associations with 12-year outcomes were not statistically significant. Conclusion A healthy diet including whole fruits, but not fruit juice, may play a role in mitigating T2DM risk

    Integrating Western and non-Western cultural expressions to further cultural and creative tourism: a case study

    Get PDF
    The term cultural industries was coined more than half a century ago, but at the beginning of the twenty-first century, the broader concept of creative industries, covering a wide range of cultural, design and digital activity, captured the imagination of public policymakers at national and city levels. Paralleling these developments has been the recognition of the phenomenon of cultural tourism and, more recently, the emergence of the idea of creative tourism, that is, tourism programmes designed to engage tourists actively in cultural activity. This paper presents a case study of a creative tourism event which took place in 2012 in the City of Manchester in the UK. The festival, which celebrated West African culture, utilised existing cultural institutions of the city and drew on the talents of local and visiting members of West African community to engage not only tourists but also indigenous and Black and Minority Ethnic (BME) residents of Manchester in a variety of cultural activities. It thus used the focus of creative tourism to seek to foster community and cultural development as well as tourism

    Multiwavelength observations of the M15 intermediate velocity cloud

    Full text link
    We present Westerbork Synthesis Radio Telescope HI images, Lovell Telescope multibeam HI wide-field mapping, Wisconsin H-alpha Mapper facility images, William Herschel Telescope longslit echelle CaII observations, and IRAS ISSA 60 and 100 micron coadded images towards the intermediate velocity cloud located in the general direction of the M15 globular cluster. When combined with previously-published Arecibo data, the HI gas in the IVC is found to be clumpy, with peak HI column density of 1.5x10^(20) cm^(-2), inferred volume density (assuming spherical symmetry) of 24 cm^(-3)/(D kpc), and maximum brightness temperature at a resolution of 81x14 arcsec of 14 K. The HI gas in the cloud is warm, with a minimum FWHM value of 5 km/s, corresponding to a kinetic temperature, in the absence of turbulence, of 540 K. There are indications in the HI data of 2-component velocity structure in the IVC, indicative of cloudlets. This velocity structure is also tentatively seen in the CaK spectra, although the SNR is low. The main IVC condensation is detected by WHAM in H-alpha with intensities uncorrected for Galactic absorption of upto 1.3 Rayleigh, indicating that the cloud is partially ionised. The FWHM of the ionised component, at a resolution of 1 degree, exceeds 30 km/s. The spatial and velocity coincidence of the H-alpha and HI peaks in emission is qualitatively good. Finally, the 100 and 60 micron IRAS images show spatial coincidence over a 0.7 degree field, with low and intermediate-velocity gas, respectively, indicating that the IVC may contain dust.Comment: MNRAS, in pres

    Climate change drives expansion of Antarctic ice-free habitat

    Get PDF
    Antarctic terrestrial biodiversity occurs almost exclusively in ice-free areas that cover less than 1% of the continent. Climate change will alter the extent and configuration of ice-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on ice-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, ice-free areas could expand by over 17,000 km2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in ice-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated ice-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species
    corecore