1	Islands in the ice: Climate change impacts Antarctic biodiversity habitat
2	
3	Jasmine R Lee ^{1,2*} , Ben Raymond ^{3,4,5} , Thomas J Bracegirdle ⁶ , Iadine Chadès ^{2,7} , Richard A
4	Fuller ¹ , Justine D Shaw ^{1,7} , Aleks Terauds ³
5	
6	¹ Centre for Biodiversity and Conservation Science, School of Biological Sciences, The
7	University of Queensland, Brisbane, QLD 4072, Australia
8	² CSIRO, Dutton Park, Queensland 4102, Australia
9	³ Antarctic Management and Conservation, Australian Antarctic Division, Department of the
10	Environment, 203 Channel Highway, Kingston, TAS 7050, Australia
11	⁴ Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania,
12	Private Bag 80, Hobart TAS 7001, Australia
13	⁵ Institute of Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart
14	TAS 7000, Australia
15	⁶ British Antarctic Survey, Madingley Road, Cambridge CB3 0ET, United Kingdom
16	⁷ ARC Centre of Excellence for Environmental Decisions, The University of Queensland,

17 Brisbane, QLD 4072, Australia

18 Summary

19

Antarctic terrestrial biodiversity almost exclusively occurs in ice-free areas that cover less 20 21 than 1% of the continent. Climate change will alter the extent and configuration of ice-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the 22 impact of 21st century climate change on ice-free areas under two IPCC climate forcing 23 scenarios using temperature-index melt modelling. Under the strongest forcing scenario, ice-24 free areas could expand by over $17,000 \text{ km}^2$ by the end of the century, close to a 25% 25 26 increase. Most of this expansion will occur in the Antarctic Peninsula, where a three-fold increase in ice-free area could drastically change the availability and connectivity of 27 biodiversity habitat. Isolated ice-free areas will coalesce, and while the impacts on 28 29 biodiversity are uncertain, we hypothesise that they could eventually lead to increasing regional scale biotic homogenisation, the extinction of less competitive species and the 30 spread of invasive species. 31

Climate change poses one of the greatest threats to biodiversity persistence worldwide¹. The Antarctic Peninsula has experienced one of the most rapid temperature rises in the Southern Hemisphere^{2,3}. This increase has recently paused, which is likely a consequence of short-term natural climate variability masking the longer-term human influence⁴. However, the anthropogenic signal is likely to become more pronounced over the 21st century, resulting in further significant warming across the Peninsula and wider Antarctic continent⁵⁻⁷.

38

Considerable resources and research have been directed into studying and understanding the effects of climate change on the melting of the Antarctic ice-sheets and their contribution to global sea-level rise⁸⁻¹⁰. In comparison, until very recently, the impacts of climate change and associated ice melt on native Antarctic biodiversity have been largely overlooked¹¹. Yet, a warming climate has the potential to cause substantial expansion of ice-free areas across Antarctica, possibly allowing some species to expand and even cross ancient biogeographical divides as ice-free areas begin to coalesce.

46

47 Ice-free Antarctica

48

Ice-free areas form isolated patches of habitat within a matrix of ice, analogous to islands in 49 an ocean¹². They manifest in many forms, including exposed mountain-tops (nunataks), 50 51 cliffs, scree slopes, ice-free valleys, coastal oases and islands, ranging in size from less than 1 km² to thousands of km², and can be separated by merely metres to hundreds of 52 kilometres^{13,14}. The direct and indirect effects of climate change on ice-free areas have not yet 53 54 been investigated across the broader continent, or even at a regional scale, leaving a significant gap in our understanding of climate change impacts on Antarctic species, 55 ecosystems and their future conservation. 56

58	Comprising less than 1% of Antarctica ^{15,16} , permanently ice-free areas are home to almost all
59	the continent's biodiversity, including arthropods, nematodes, microbes, vegetation (vascular
60	plants, lichen, fungi, moss and algae), rotifers, and tardigrades ^{17,18} . Ice-free areas also form
61	essential breeding grounds for seals and seabirds. Until recently it was believed that Antarctic
62	biodiversity underwent a major extinction event during the Last Glacial Maximum (LGM),
63	subsequently colonising and expanding during the glacial recession ^{19,20} . However, geological
64	and genetic studies suggest that many taxa persisted through the LGM and quite probably
65	multiple glacial cycles, by contracting into refugia ^{19,21} . Springtails for example, are believed
66	to have diversified during the late Miocene and have long since been separated by glacial
67	barriers ²² .

Many species are recorded from only a single region across the continent (including 69 tardigrades, rotifers and nematodes²³), or indeed even single ice-free areas (eg. the tardigrade 70 *Mopsechiniscus franciscae* from Victoria Land²⁴ or the rotifer *Rhinoglena kutikovae* from the 71 Bunger Hills, East Antarctica²⁵). It is uncertain whether these species are limited to these 72 patches due to lack of dispersal potential or opportunities, or whether we have limited 73 understanding of their distribution owing to a deficiency of comprehensive surveys¹⁸. 74 Regional differences in terrestrial fauna led to the identification of a broad geographic divide 75 between the Antarctic Peninsula and the rest of the Antarctic mainland (the Gressitt Line¹⁷) 76 and more recently the delineation of 16 biologically distinct regional units (Antarctic 77 Conservation Biogeographic Regions – ACBRs or bioregions)^{16,26}. Geographic isolation and 78 lack of connectivity has largely sheltered terrestrial Antarctic biota from dispersing species 79 and interspecific competition^{12,18,27}. 80

81

82 Abiotic factors, such as availability of water, energy (e.g. sunlight) and nutrients, are widely understood to be the major drivers of Antarctic species distributions and life histories^{14,18, 23,} 83 28 , unlike many regions of the world (such as African savannah²⁹ or rainforests³⁰), where 84 predation and competition have more substantive impacts on species distributions. Antarctic 85 biodiversity is also severely limited by physical barriers, such as expanses of ice and snow, 86 which decrease dispersal opportunities between ice-free patches^{14,20}. How Antarctic 87 communities as a whole will cope with a changing climate and potential increases in habitat 88 and biotic interactions remains largely unknown^{13,18}. 89

90

To determine the likelihood of climate induced ice melt around Antarctic ice-free areas we 91 used a temperature-index modelling approach (see Methods), previously used to estimate ice 92 melt in the European Alps, New Zealand and the Arctic^{31,32}. We make projections for the 93 year 2098 under two of the Representative Concentration Pathways (RCP4.5, 8.5³³) adopted 94 by the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report³⁴ (AR5). 95 96 By combining air temperature, radiation, projected precipitation changes and recently updated spatial layers of current ice-free area and ice coverage, we quantified, for the first 97 time, the potential impacts of 21st century climate change on ice-free areas and present 98 hypotheses on the associated implications for Antarctic terrestrial biota. 99

101 Changing Climate in the Antarctic

102

Across the Antarctic continent, it is the Antarctic Peninsula that shows the greatest projected future changes in climate by the end of the century (Fig. 1), perhaps not surprising given the rapid climate change already observed in this region^{2,3,12}. Increases in degree days and the attendant ice melt are mostly restricted to coastal regions and are heavily concentrated around the Antarctic Peninsula (Fig. 1a). The greatest projected changes in precipitation are also over the Peninsula, potentially increasing by over 400 mm/yr in some areas (Fig. 1b).

Concomitant with these projected climate changes across the Peninsula are dramatic changes 110 in ice coverage. Ice and snow melt largely reflect the projected change in degree days (Fig. 111 112 1c), and for most of the continent is predicted to be less than 1 m by the end of the century. In contrast, we predict over 5 m of melt in some Peninsula areas, where melt far outweighs the 113 increasing precipitation. These results are consistent with ice sheet and surface mass balance 114 (SMB) models of Antarctica^{9,10,35}. For example, studies found increased SMB across most of 115 the continent due to increased snowfall⁹, decreased SMB and increased run-off in the 116 Antarctic Peninsula⁹, and triggering of extensive surface meltwater due to increasing summer 117 air temperatures, leading to major retreat and thinning of outlet glaciers and ice shelves in the 118 Antarctic Peninsula and across the West Antarctic Ice Sheet¹⁰. 119

Figure 1. Projected 21st century climate change between 2014 and 2098 under RCP8.5,
showing *a*) the change in degree days, *b*) the change in precipitation rate (mm/yr), and *c*)
projected melt (m) using mean melt coefficients (see Methods). RCP4.5 is provided in

- 123 Extended Data Fig. 1.
- 124
- 125 Emerging ice-free area
- 126

127 We predict that melt across the Antarctic continent will lead to the emergence of between

- 128 2,100 and 17,267 km² of new ice-free area by the end of this century (Extended Data Table
- 129 1), with the upper bound representing nearly a 25% increase in total area. More than 85% of

130 this new ice-free area will emerge in the North Antarctic Peninsula bioregion, with some also emerging along the East Antarctic coastline (Fig. 2). For the Peninsula, this could mean an 131 almost three-fold increase of total ice-free area under the most severe scenario (RCP8.5), 132 which the globe is on track to meet if emissions are not substantially reduced³⁶, 133 134 The South Orkney Islands are projected to become completely ice-free in five of the six melt 135 scenarios (Fig. 3), with a global temperature rise beyond 2° C leading to a 4-fold increase in 136 ice-free area for this bioregion (contrast with RCP2.6 in Extended Data Fig. 3 and Extended 137 138 Data Table 2, where the bioregion is scarcely affected). This will result in a complete transformation of the physical environment, with the emergence of new habitat providing 139 new dispersal and colonisation opportunities for the region's biota and possibly non-native 140 141 species.

145 Peninsula inset. 'Mean' melt scenario for RCP4.5 in Extended Data Fig. 2.

Figure 3. Current and future ice-free area (km²) in each Antarctic Conservation
Biogeographic Region, with future estimates provided for two different climate change
scenarios (RCP4.5, RCP8.5) using the model subset ensemble mean (see Methods). Bars
represent total area using the mean ice melt coefficients, whilst error bars represent the lower
and upper bounds respectively (lowest and highest ice melt coefficients). Bar colours
correspond to map locations of bioregions. Full-ensemble Ensemble Regression mean model
results are shown in Extended Data Fig. 3.

155 The Transantarctic Mountains (ACBR 10) currently contain the largest amount of ice-free

- area on a bioregional scale (Fig. 3, Extended Data Table 3 and 4), yet even under RCP8.5,
- 157 this bioregion is likely to experience very little change by the end of the century. In contrast,

ice-free area in the North Antarctic Peninsula (ACBR 3a) will undergo substantial expansion 158 (Fig. 3, Extended Data Table 3 and 4) and our predictions indicate that in the future it could 159 contain the largest amount of ice-free area of any bioregion (Fig. 3, Extended Data Table 3). 160 The spatial changes exhibited by the North Antarctic Peninsula are depicted in Figure 4, 161 illustrating the mass expansion of ice-free area under climate change. There will also be some 162 change in the South Orkney Islands (ACBR 2), the Central-south Antarctic Peninsula (ACBR 163 164 4) and East Antarctica (ACBR 7), but little change across most other bioregions (Extended Data Table 3). 165

166

The number of individual ice-free patches in Antarctica are projected to decrease by nearly 167 3,000 as patches coalesce (marked reductions in the North Antarctic Peninsula and South 168 169 Orkney Islands, and smaller reductions across bioregions 4, 5 and 16; Extended Data Table 3), which is also consistent with an increase in mean patch size (Extended Data Table 3). In 170 the North Antarctic Peninsula, mean patch area increases significantly by the end of the 171 century under RCP4.5 and RCP8.5 (Fig. 5. a; Supplementary Table 1), the total ice-free area 172 could increase by a maximum of >9,000 km² under RCP4.5, and >14,500 km² under RCP8.5 173 (upper bound: Fig. 5. b) and number of patches decreases with the severity of the RCP 174 scenario (Fig. 5. c). Distance to nearest neighbouring ice-free area decreases in some 175 bioregions due to edge melt (expansion of existing patches, e.g. ACBR 2 and 7) but increases 176 177 in other bioregions as nearby patches coalesce (yet this still reduces distance to the neighbour that is currently considered the closest e.g. ACBR 3a; Fig 5. d, Extended Data Table 3). 178 However, in both cases these changes portend an increasingly connected landscape with 179 180 reduced isolation of ice-free patches. This is in striking contrast to a trend of decreasing connectivity and increasing habitat fragmentation frequently seen in response to climate 181 change and anthropogenic impacts across the rest of the globe^{37,38}. 182

Figure 4. Projected cumulative changes in ice-free area size and distribution for North

185 Antarctic Peninsula (ACBR 3a) by the year 2098 under two climate change scenarios; **a**)

186 current, **b**) RCP4.5, **c**) RCP8.5

Figure 5. Ice-free area metrics for Antarctic Conservation Biogeographic Region 3a (North Antarctic Peninsula) under current climate conditions (C) and two different RCP scenarios (4.5, 8.5). a) mean area of ice-free patches (km²), b) total ice-free area (km²), c) number of ice-free patches, and d) mean distance to nearest neighbour (NN; m). Mid-line on box represents the 'mean' ice-melt coefficients, whilst bottom of box represents 'lower' bound, top of box represents 'upper' bound, and error bars represent standard error of the 'mean'.

196 Implications for biodiversity

197

198 Climate-driven expansion of ice-free area will uncover a substantial amount of potential new

- 199 habitat for species and decrease the distance between patches, increasing connectivity.
- 200 Despite the profound potential consequences for native fauna and flora, these impacts have

scarcely been explored (see Olech and Chwedorzewska³⁹ for one example). Using existing
 biodiversity knowledge and considering all terrestrial taxa, we propose hypotheses on
 potential biodiversity impacts at various scales – from bioregional to species level.

Habitat expansion and increasing connectivity might generally be interpreted as a positive 205 change for biodiversity³⁷, however, in Antarctica it is not known if the potential negative 206 impacts will outweigh the benefits. While the expansion of available habitat and merging ice-207 free areas will undoubtedly enable some native species access to new resources and to 208 209 colonise new space, the increasing connectivity could have destabilising impacts on ecological communities, for example via the spread of invasive species, which already pose a 210 substantial threat to native biota^{17,40}. Colonisation of newly exposed habitat has already been 211 212 observed in the Antarctic Peninsula, where rocks recently exposed by snow melt have been subsequently colonised by Rhizocarpon lichens⁴¹ or where the invasive grass Poa annua has 213 colonised new ice-free land near Ecology Glacier³⁹. Evidence from both the sub-Antarctic 214 and Antarctic suggests *Poa annua* may begin to outcompete native species^{40,42,43}. 215

216

Within bioregions, (where there is often far less difference in taxonomic diversity than across 217 bioregions^{16,26}), native species may be able to establish new local populations or increase 218 219 gene flow between existing populations. This has been demonstrated from previous glacial 220 recessions, where populations of the formerly isolated springtail, Gomphiocephalus hodgsoni, in the McMurdo Dry Valleys (North Victoria Land) recolonised surrounding areas, increasing 221 gene flow as the populations once again became sympatric²⁰. However, as climate warms, 222 223 metabolic studies suggest that some G. hodgsoni lineages may begin to outcompete others due to the genetic and physiological adaptations accumulated during allopatry, which in the 224 long term could cause populations to homogenise as genetic variation is $lost^{20}$. 225

Antarctic climate change may produce both 'winners' and 'losers'. For example, Adélie (*Pygoscelis adeliae*) and emperor (*Aptenodytes forsteri*) penguins are already contracting poleward with declines in sea ice extent⁴⁴, whilst the two vascular plants on the Antarctic Peninsula (*Colobanthus quitensis* and *Deschampsia antarctica*) are quickly expanding south with warming^{17,45}. Microbial taxa may also benefit, where closer ice-free patches facilitate spore dispersal and a warming climate provides further opportunity for alien microbes to establish⁴⁵. Other 'winners' will likely include non-native species^{40,42,43}.

234

The specialised biological traits of Antarctic species that give them the ability to adapt to 235 environmental extremes in an isolated environment, put them at increased risk from invasive 236 species^{17,21}, which are typically highly adaptable with rapid life-cycles⁴⁶. Invasive species 237 have the potential to increase competition in isolated regions, where native species may 238 become subject to biological interactions they have not experienced for much of their 239 evolutionary history⁴². The Antarctic Peninsula region already represents the highest risk for 240 establishment of non-native species across the continent⁴⁰, and in fact, already contains the 241 highest number of established non-native species⁴³. Furthermore, the region is already 242 experiencing severe glacial and ice-shelf retreat⁴⁷ and the subsequent exposure of new 243 intertidal ice-free areas has been identified as a key conservation issue^{11,48}. The increasing 244 245 connectivity throughout the Antarctic Peninsula may even allow some species to cross bioregional boundaries, where large scale habitat expansion could eventually lead to localised 246 homogenisation of terrestrial biodiversity across bioregions. 247

248

Given the minimal changes in degree days and precipitation (Fig. 1), ice-free areas across the rest of the Antarctic mainland will probably be largely unaffected by climate warming in this

century, with some expansion projected only in East Antarctica. This implies minimal 251 biodiversity impacts in these bioregions until climate driven temperature increases begin to 252 substantially affect ice melt on mainland Antarctica^{5,6}. Changing climate conditions may also 253 254 begin to impact growth and movement of biota through changes in the distribution of energy, such as sunlight, radiation and wind^{7,18}. For example, low temperatures are thought to limit 255 Antarctic bryophyte reproduction, therefore an ameliorating climate will likely increase 256 sporophyte production and dispersal opportunities for some species, ultimately influencing 257 their potential distribution⁴⁹. In light of the broad biological divide between the Peninsula and 258 mainland Antarctica, entire groups of species south of the Gressitt Line^{14,17} may be shielded 259 from direct climate change impacts in this century. High levels of endemism could therefore 260 be maintained in some parts of Antarctica, while the Peninsula regions begin to locally 261 262 homogenise.

263

In the coming centuries, as the anthropogenic signal of climate change becomes more 264 pronounced across the entire Antarctic continent^{5,6}, we might expect mainland Antarctica 265 eventually to experience more substantial transformation of ice-free areas. Multiple century 266 impacts of physical expansion of ice-free areas on native biodiversity have the potential to be 267 severe, and mainland bioregions may be put at further risk of invasive species and increased 268 competition, possibly leading to growing homogenisation and extinctions of terrestrial 269 270 biodiversity across the entire continent. This highlights the need for continued monitoring and modelling of Antarctic ecosystems as climate change progresses and longer term 271 projections become available. Although global emissions are currently tracking the highest 272 greenhouse gas emissions scenario (RCP 8.5^{36}), if emissions can be reduced, and 273 anthropogenic temperature increases kept to $<2^{\circ}$ C (as per the Paris Agreement⁵⁰), then the 274 impacts on ice-free habitat and its dependent biodiversity are likely to be reduced. 275

276	Methods
277	
278	Current Ice-free
279	
280	Current ice-free areas were delineated using the recent spatial layers available in the
281	Scientific Committee for Antarctic Research (SCAR) Antarctic Digital Database (ADD
282	Version 7; www.add.scar.org). We used the 'medium resolution' rock-outcrop layer,
283	equivalent to a 1:1 million scale, because this best matches the 1 km ² resolution of the ice-
284	thickness layer and spatially interpolated climate data (see below), enabling us to match
285	future projections of ice melt with a map of currently ice-free areas.
286	
287	Current Ice Thickness
288	
289	Current ice thickness is required to determine how melt will impact the distribution of ice-
290	free areas. We used the Bedmap2 'ice thickness' layer from the British Antarctic Survey,
291	which gives ice thickness on a 1 km grid of Antarctica ⁵¹ . The Bedmap2 layer is generated
292	from primary data (direct ice thickness measurements and satellite altimetry measurements)
293	where available, and where unavailable, it was modelled using a 'thin ice' model (see ref. 51
294	for details).
295	
296	Ice melt
297	
298	There are several methods available for measuring changing ice in polar regions. Energy-
299	balance models assess surface energy fluxes to determine the amount of energy available for
300	melt ⁵² . Surface mass balance (SMB) studies, which focus on ice sheets and their contribution

to sea level rise^{8,9}, subtract loss of snow and ice (sublimation, run off, erosion) from the
accumulation through precipitation. These methods are usually applied at pan-continental ice
sheet scales, often covering hundreds of kilometres and modelling gigatonnes of ice. In
contrast, our biodiversity based focus is at the periphery of current ice-free areas, where ice
can be orders of magnitudes thinner than most of the Antarctic Ice Sheet⁵¹. These areas are
typically relatively small (kilometres to tens of kilometres).

307

A widely used method of measuring ice and snow melt on this type of regional or catchment 308 309 scale is temperature-index modelling, which relies on the strong correlation between ice melt and air temperature⁵². Though a simplification of the complex 'energy-balance' methods 310 incorporating heat flux and energy transfer, temperature-index models have been found to 311 perform as well as and even out-perform energy-balance models on this scale and over longer 312 time periods^{31,52,53}. The good performance and relatively low data requirements of 313 temperature-index modelling make it appropriate for our study and our focus on the 314 ecological implications of change. 315

316

We used a temperature-index approach based on degree days and incorporating solar 317 radiation⁵⁴. The current configuration of ice-free areas (as defined by ADD v7) is a result of 318 both climatic and other processes (such as glaciological history, wind, elevation, temperature 319 and precipitation⁵⁵). To isolate the effects of climate change from these other processes, we 320 assume that the current configuration of ice-free areas is stable under current climatic 321 conditions (temperature and precipitation), allowing us to attribute melt purely to differences 322 in projected climate between now and 2098. We used the projected melt and the Bedmap2 ice 323 thickness layer to determine which areas would melt under different climate forcing scenarios 324

and combined these with the current ice-free areas to determine future configuration. For asimple overview of our methods, refer to Extended Data Fig. 4.

327

328 Current Degree Days

329 Three hourly air temperature records (mean of 2014 & 2015 temperatures, 10 km resolution)

from the Antarctic Mesoscale Prediction System (AMPS⁵⁶;

331 http://www2.mmm.ucar.edu/rt/amps/) were used to calculate degree days for each day of the

year according to equation (1). The European Centre for Medium Range Weather Forecasts

333 (ECMWF) ERA-interim re-analysis data⁵⁷ was used to verify that 2014 and 2015

temperatures were not anomalous relative to the period 1979 – 2015. Combined, 2014-2015

displayed temperature anomalies of up to 0.5° C, which was deemed satisfactory given that

future projected changes are in the order of 3-4°C (Extended Data Fig. 5). All spatial layers

were reprojected and interpolated to 1 km^2 cells to match the resolution of the Bedmap2 ice

thickness layer. The degree day value for day i in cell x gives a measure of the time spent

above freezing (and thus potential for ice melt), calculated as:

340

342

343
$$DD_{ix} = \frac{1}{n} \sum_{t=1}^{n} \begin{cases} T_{ix}(t), & T_{ix}(t) > 0 \\ 0, & T_{ix}(t) \le 0 \end{cases}$$

344

where $T_{ix}(t)$ is the air temperature (°C) at time step *t* on day *i* in cell *x*, and *n* is the total number of time steps per day (here n = 8 as the time step is 3h).

347

349 Climate model data

Changes in surface air temperature (temperature at 2 m above the surface) and precipitation 350 rate were estimated from climate model output from the most recent phase, phase 5, of the 351 World Climate Research Programme's (WCRP) Coupled Model Inter-comparison Project⁵⁸ 352 (CMIP5). The CMIP5 dataset comprises output from approximately 50 different fully 353 coupled climate and earth-system models (or model variants) and was the primary source of 354 climate model data for the analysis included in the IPCC Fifth Assessment Report³⁴ (AR5). In 355 this study, we use data from two types of simulation: (i) 'historical' simulations for which 356 357 past known climate forcings such as observed greenhouse gas concentrations are used and (ii) future scenario Representative Concentration Pathway (RCP) simulations for which a number 358 of different possible future outcomes in terms of anthropogenic climate forcing are defined³³. 359 360 Here we use a medium forcing scenario (RCP4.5) and the most extreme, high forcing scenario (RCP8.5). For the variables considered in this study, 21st century change is 361 quantified as the difference between time-mean climatologies over the 30-year period 2069-362 2098 from the RCP simulations and the time-mean climatology over the 30-year period 1970-363 1999 from the historical simulations. The variables used in this study are surface air 364 temperature (CMIP5 variable name "tas") and total precipitation rate (variable name "pr") for 365 which monthly mean data were evaluated. For these variables, data from 38 of the CMIP5 366 models was found to have data available for the historical-RCP4.5 scenario pair and 40 367 368 models for the RCP8.5-historical scenario pair (listed in Supplementary Table 5).

369

370 *Climate model subsetting*

The key region for change was identified as the Antarctic Peninsula. Many of the CMIP5
climate models are run at rather low atmospheric resolution (see Supplementary Table 5),
which affects the representation of the high mountains of the Antarctic Peninsula in these

models⁵⁹. In addition, many models exhibit large biases in a main feature of regional
circulation, the Amundsen Sea Low (ASL), which exerts a strong influence on Antarctic
Peninsula temperature and precipitation⁶⁰. We therefore identified a subset of CMIP5 models
taking into account model resolution and fidelity at reproducing observed characteristics of
the ASL.

379

380 For resolution, the criterion for model subsetting was to select those models with a latitudinal grid spacing of less than the median of 1.9° across the 40 models listed in Supplementary 381 382 Table 5. After applying this constraint 17 of the 40 models remained. Although higher resolution climate model data than that available from the CMIP5 dataset would be 383 preferable, this procedure identifies a more appropriate subset of the currently-available 384 385 model output. With regard to the ASL, ref. 60 identified 11 CMIP5 models that most reliably reproduce the observed characteristics of the ASL. Applying a further constraint, whereby 386 only those models identified by ref. 60 were included, left a subset of 9 models: CMCC-CM, 387 CCSM4, CESM1(BGC), CESM1(CAM5), EC-EARTH, MRI-CGCM3, MRI-ESM1, 388 HadGEM2-AO, CNRM-CM5. To avoid duplication of model variants from the same 389 modelling centre the following additional filtering was conducted as follows: 390 (i) CESM1(CAM5) was chosen instead of CESM1(BGC) due to its smaller bias in ASL 391 representation. 392 393 (ii) MRI-CGCM3 was chosen over MRI-ESM1due to its smaller bias in ASL representation. This resulted in the final subset of 7 models as follows: CMCC-CM, CCSM4, 394 CESM1(CAM5), EC-EARTH, MRI-CGCM3, HadGEM2-AO, and CNRM-CM5. 395 396 Sensitivity to using an alternative method that combines the full ensemble of available model 397

data in estimating the mean future projected change (known as ensemble regression $(ER)^{61}$

399	and referred to here as the full-ensemble ER mean) and the above subset (the subset ensemble
400	mean) was evaluated by using both approaches in analysis. Before producing multi-model
401	averages it was necessary to re-grid onto a common atmospheric grid. The HadGEM2-AO
402	atmospheric grid (1.875° longitude x 1.25° latitude) was chosen as the common grid.
403	
404	Future Degree Days
405	The projected changes in temperature (ΔT) were added to current temperatures to calculate
406	temperatures at 3-hourly intervals (equation 2) for the year 2098 for RCP4.5 and RCP8.5
407	emissions scenarios (and RCP2.6 for the full-ensemble ER mean).
408	
409	(2)
410	
411	$T_{fx} = T_{cx} + 0.835 \Delta T_x$
412	
413	Where T_{fx} is future temperature in cell <i>x</i> , T_{cx} is current temperature in cell <i>x</i> using the AMPS
414	3 hourly air temperature records and ΔT_x is the projected change in air temperature (°C) in
415	cell x for the year 2098, multiplied by 0.835 as the temperature projections were made on a
416	hundred-year timeframe (1998 – 2098), yet current temperatures were averaged for 2014 and
417	2015, which is only a 83.5-year timeframe (assuming some of the change occurred pre 2014).
418	
419	
420	Daily degree days for the year 2098, under the two climate change scenarios (RCP4.5,
421	RCP8.5, & RCP2.6 for full-ensemble ER mean projections) were then calculated according
422	to equation (1), using future air temperatures.
423	

424 Delta Degree Days

The daily difference in degree days (ΔDD) was determined for each RCP scenario by
subtracting the current daily degree day values from future daily degree day values. These
values were then reprojected to the 1 km² Bedmap2 grid.

428

429 Radiation

Potential direct solar radiation was calculated daily for 365 days in a year at a 1 km² resolution, according to the methods described in ref. 62. This method incorporates radiation corrected for incident angle, diffuse & reflected radiation, insolation, latitude, elevation, slope and aspect and assumes a clear sky (no clouds). Cloud effects have been incorporated into temperature-index models in previous studies, but did not improve model performance⁵⁴. In the absence of any reliable fine-scale projected data, we assume that potential direct solar radiation will be the same in 2014/2015 and 2098.

437

438 *Melt*

In temperature-index models, the melt rate is determined by the 'degree day factor', which represents the amount of melt that will occur under one degree day. When incorporating radiation the commonly used 'degree day factor' is replaced by a 'melt factor', where daily radiation is used to vary the melt rate, making it spatially explicit (eg. north-facing slopes, particularly in coastal Antarctica, will receive more sunlight and consequently melt faster).

445 Total melt for the years 2014-2098 was calculated for three RCP scenarios as per equation446 (3).

- 447
- 448

449 **(3)**

450

451
$$M_x = \sum_{i=1}^{365} \Delta DD_{ix} (MF + aI_{ix})$$

452

where M_x is the total melt (mm) for cell *x* that has occurred between 2014 and 2098, ΔDD_{ix} is the daily difference in degree days for day *i* in cell *x*, *MF* is the melt factor (mm d⁻¹ °C⁻¹; Table 3), *a* is the radiation coefficient (m² W⁻¹ mm d⁻¹ °C⁻¹; Table 3), and I_{ix} is the daily

456 potential radiation (W m²) for day i and cell x.

457

458

As it was not possible to obtain direct measurements of melt rate on a continental scale, we 459 relied on the literature to estimate the melt rate (Supplementary Tables 6 - 8). There was little 460 information available regarding melt factors (MF) directly, therefore the large number of 461 globally recorded degree day factors (DDF; Supplementary Table 6) were used to calculate 462 the MF, as per equation (4). 463 464 (4) 465 466 MF = DDF - (aI)467

468

469 Where *MF* is the melt factor, *DDF* is the degree day factor (Extended Data Table 5), *a* is the 470 radiation coefficient (Extended Data Table 5) and *I* is the daily radiation, here I = 121.862,

471 which is the mean daily radiation across the Antarctic continent.

Various melt factor and radiation coefficients were utilised to estimate lower and upper 474 bounds for total melt (Extended Data Table 5), which allowed us to incorporate uncertainty in 475 our estimates of melt rate. The lower and upper bounds represent the lowest and highest 476 possible melt we could expect based on a literature review of the melting rates of snow/ice, 477 whilst the mean represents the melt rate that would occur using the mean coefficient values. 478 479 The three calculated melt factors (lower, upper, mean) reflect the range of degree day factor values in the literature well, if somewhat conservatively (Supplementary Table 6). The lower 480 481 and upper radiation coefficients (a) represent the mean of all values found in the literature for snow and ice respectively (Supplementary Table 8). As there is no measure of the relative 482 amounts of snow and ice cover on a continental scale for Antarctica, it was reasonable to use 483 484 coefficient values for snow to generate the lower bound and coefficient values for ice to generate the upper bound (ice generally melts at a faster rate than snow due to decreased 485 albedo). 486

487

We generated 15 melt scenarios overall (mean, lower and upper bound for each RCP; two
RCPs for the subset ensemble approach, and three RCPs for the full-ensemble ER mean
approach).

491

492 Incorporation of precipitation into melt projections

The precipitation climate model projections were extracted from the CMIP5 dataset as described above. Like ΔT , we multiplied ΔP by 0.835 as the precipitation projections were made on a hundred year timeframe, yet we use a 83.5-year timeframe (beginning 2014/2015). ΔP was then reprojected to the Bedmap2 1 km² grid.

We then incorporate precipitation into melt projections by subtracting ΔP from the total melt
for each cell, yielding an estimate of melt adjusted for future changes in precipitation
As the ensemble regression methodology has not yet been developed for application to
precipitation projections, the 9 full-ensemble ER mean scenario projections (Extended Data
Table 2 and Extended Data Fig. 3) do not take projected changes in precipitation into
account.

504

505 Impact of melt on ice-free areas

506

507 *Bedmap2*

To determine how ice melt would impact the physical environment we overlaid the 21 melt 508 scenario layers onto the Bedmap2 ice thickness layer⁵¹. The 'thin ice' model that was used to 509 generate ice thickness in the absence of direct thickness measurements⁵¹ led to the occasional 510 estimation of zero ice-thickness cells beyond the boundaries of known ice-free areas (ie. cells 511 with an ice-thickness of zero that did not overlap an ice-free area in the ADD medium 512 resolution rock outcrop layer), perhaps an artefact of the gridding algorithm (P. Fretwell, pers 513 comms 2015), and possibly also due to the integer nature of the Bedmap2 layer, where cell 514 values were generated (or rounded) to the nearest metre. These cells with a false zero 515 thickness are likely thin ice, but are not genuinely ice-free according to the ADD rock 516 517 outcrop layer. To deal with the uncertainty in the true value of these cells, we generated 16 ice-thickness layers, where we applied nominal thickness values increasing at 10 cm intervals 518 from 0.0 m to 1.5 m to all Bedmap2 cells identified with an ice-thickness of zero (all other 519 520 cell values remained the same). We then generated a 'likelihood' of melt, where we subtracted the melt (m) from each of the 16 ice-thickness layers, summed the number of 521 times the cell became ice-free (ie. reached a thickness of zero) and divided by 16 to give the 522

overall probability of becoming ice-free based on the Bedmap2 ice thickness layer. To 523 generate estimated future ice-free layers for each of the three climate scenarios we used a 524 majority decision rule, where only cells with 50% or greater probability of melting were 525 included in our future ice-free layers. We then used binary rasters as our output to indicate 526 whether or not a cell was ice-free. While this method still has the potential to both 527 underestimate and overestimate the true number of cells that are likely to become ice free, we 528 believe simulating a range of values and using the majority rule represents a realistic vet 529 conservative approach to making these predictions. Increasing the number of direct 530 531 measurements of ice-thickness around ice-free areas would help to reduce uncertainty in future models of these regions. We were not able to account for glacial retreat or positive 532 feedback cycles in our models, where increasing meltwater can further increase surface 533 melt⁶³ and retreating glaciers accelerate the retreat of other glaciers^{64,65}. These processes all 534 likely accelerate ice melt and therefore reinforce the conservative nature of our estimates of 535 ice-free area expansion. 536

537

538 Future ice-free layers

539 Cells projected to be ice-free were extracted and all contiguous cells (including cells that 540 touch only diagonally) were assigned to the same 'region group' using ArcMap 10.3. The 541 raster cells were then converted to polygons and dissolved by region group. Each group of 542 contiguous raster cells now represents a single polygon.

543

As ice melt doesn't follow the strict geometric lines of raster cells, polygon smoothing was
necessary to remove the polygon edges remnant of the cells. After multiple trials, Polynomial
Approximation with Exponential Kernel (PAEK) smoothing (3 km tolerance; ArcGIS tool)
was applied to each new polygon layer. This smoother best fitted the scale of the ADD

Version 7 medium resolution ice-free layer. We then merged these layers with the current
ice-free layer to generate the final future ice-free layers. These layers generated using the
model subset ensemble mean have been made available through the Australian Antarctic Data
Centre (AADC – data.aad.gov.au DOI Pending).

- 552
- 553 *Metrics*

To summarise the predictions in a biologically meaningful manner, we used the Antarctic 554 Conservation Biogeographic Regions (ACBRs^{16, 26}), which identify biologically distinct 555 556 regions across the continent, and provide an appropriate scale to develop and apply conservation management. We combined the interspersed ACBR 1 and ACBR 3 to facilitate 557 our analyses of physical changes and connectivity, and hereafter refer to this as ACBR 3a -558 559 North Antarctic Peninsula. The ACBRs are a commonly used spatial framework for Antarctic research, management and policy, and have been endorsed by the Antarctic Treaty System 560 (ATS)^{16, 18, 66, 67}. 561

562

Each polygon in the future ice-free layers was assigned to an ACBR via a spatial join with
the current ice-free layer. We generated metrics describing the extent and connectivity of icefree areas, at a continental and bioregional scale (Supplementary Table 9). Metrics were
generated using ArcGIS (V10.3).

567

568 *Statistics*

We used one-way analysis of variance (ANOVA) within each ACBR to test for differences in
ice-free metrics (Supplementary Table 9) under the different RCP scenarios, using R version
3.2.3⁶⁸. Results presented in the main manuscript refer only to RCP4.5 and RCP8.5 using the

572	model subset ensemble mean. Projected new ice-free area from the full-ensemble ER mean
573	projections are shown in Extended Data Table 2 and Extended Data Fig. 3.
574	
575	Data Availability
576	
577	The ice-free layers generated using the model subset ensemble mean have been made
578	available through the Australian Antarctic Data Centre (AADC – data.aad.gov.au - DOI
579	Pending).

581 **References**

- 583 1. Urban, M. C. Accelerating extinction risk from climate change. *Science* 348, 571584 573 (2015).
- 585 2. Vaughan, D. *et al.* Recent Rapid Regional Climate Warming on the Antarctic
 586 Peninsula. *Clim. Chang.* 60, 243-274 (2003).
- 587 3. Mulvaney, R. *et al.* Recent Antarctic Peninsula warming relative to Holocene
 588 climate and ice-shelf history. *Nature* 489, 141-144 (2012).
- 589 4. Turner, J. *et al.* Absence of 21st century warming on Antarctic Peninsula consistent
 590 with natural variability. *Nature* 535, 411-415 (2016).
- 591 5. Hawkins, E. & Sutton, R. Time of emergence of climate signals. *Geophys. Res.*592 *Lett.* 39, doi:10.1029/2011GL050087 (2012).
- 593
 6. Bracegirdle, T. J. *et al.* Assessment of surface winds over the Atlantic, Indian, and
 594 Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias,
 595 forcing response, and state dependence. *J. Geophys. Res. Atmos.* 118, 547-562
- 596 (2013).
- 7. Robinson, S. A. & Erickson, D. J. Not just about sunburn the ozone hole's
 profound effect on climate has significant implications for Southern Hemisphere
 ecosystems. *Glob. Chang. Biol.* 21, 515-527 (2015).
- 8. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. T.
- M. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea
 level rise. *Geophys. Res. Lett.* 38, doi:10.1029/2011GL046583 (2011).
- 603 9. Ligtenberg, S. R. M., Berg, W. J., Broeke, M. R., Rae, J. G. L. & Meijgaard, E.
 604 Future surface mass balance of the Antarctic ice sheet and its influence on sea level

605	change, simulated by a regional atmospheric climate model. Clim Dyn 41, 867-884
606	(2013).

- 607 10. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea608 level rise. *Nature* 531, 591-597 (2016).
- 609 11. Sutherland, W. J. *et al.* A horizon scan of global conservation issues for 2015.
 610 *Trends Ecol. Evol.* **30**, 17-24 (2015).
- 611 12. Convey, P. Terrestrial biodiversity in Antarctica Recent advances and future
 612 challenges. *Polar Sci.* 4, 135-147 (2010).
- 613 13. Convey, P. in *Encyclopedia of Biodiversity (Second Edition)* (eds Levin, S. A.)
- 615 14. Convey, P. *et al.* The spatial structure of Antarctic biodiversity. *Ecol. Monogr.* 84,
 616 203-244 (2014).
- Burton-Johnson, A., Black, M., Fretwell, P. T. & Kaluza-Gilbert, J. An automated
 methodology for differentiating rock from snow, clouds and sea in Antarctica from

Landsat 8 imagery: a new rock outcrop map and area estimation for the entire

620 Antarctic continent. *The Cryosphere* **10**, 1665-1677 (2016).

179-188 (Academic Press, 2013).

614

- 621 16. Terauds, A. & Lee, J. R. Antarctic biogeography revisited: updating the Antarctic
 622 Conservation Biogeographic Regions. *Divers. Distrib.* 22, 836-840 (2016).
- 623 17. Chown, S. L. & Convey, P. Spatial and temporal variability across life's hierarchies
 624 in the terrestrial Antarctic. *Philos. Trans. R. Soc. B* 362, 2307–2331 (2007).
- 18. Chown, S. L. *et al.* The changing form of Antarctic biodiversity. *Nature* 522, 431438 (2015).
- 627 19. Convey, P. & Stevens, M. I. Antarctic Biodiversity. *Science* **317**, 1877-1878 (2007).

628	20. Collins, G. E. & Hogg, I. D. Temperature-related activity of Gomphiocephalus
629	hodgsoni (Collembola) mitochondrial DNA (COI) haplotypes in Taylor Valley,
630	Antarctica. Polar Biol. 39, 379-389 (2016).
631	21. Convey, P. et al. Exploring biological constraints on the glacial history of
632	Antarctica. Quat. Sci. Rev. 28, 3035-3048 (2009).
633	22. Stevens, M. I., Greenslade, P., Hogg, I. D. & Sunnucks, P. Southern Hemisphere
634	Springtails: Could Any Have Survived Glaciation of Antarctica? Mol. Biol. and
635	<i>Evol.</i> 23 , 874-882 (2006).
636	23. Velasco-Castrillón, A., Gibson, J. E. & Stevens, M. A review of current Antarctic
637	limno-terrestrial microfauna. Polar Biol. 37, 1517-1531 (2014).
638	24. Guidetti, R., Rebecchi, L., Cesari, M. & McInnes, S. J. Mopsechiniscus franciscae,
639	a new species of a rare genus of Tardigrada from continental Antarctica. Polar Biol.
640	37 , 1221-1233 (2014).
640 641	37, 1221-1233 (2014).25. De Smet, W. H. & Gibson, J. A. E. <i>Rhinoglena kutikovae</i> n.sp. (Rotifera:
640 641 642	 37, 1221-1233 (2014). 25. De Smet, W. H. & Gibson, J. A. E. <i>Rhinoglena kutikovae</i> n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable
640 641 642 643	 37, 1221-1233 (2014). 25. De Smet, W. H. & Gibson, J. A. E. <i>Rhinoglena kutikovae</i> n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. <i>Polar Biol.</i> 31,
640 641 642 643 644	 37, 1221-1233 (2014). 25. De Smet, W. H. & Gibson, J. A. E. <i>Rhinoglena kutikovae</i> n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. <i>Polar Biol.</i> 31, 595-603 (2008).
640 641 642 643 644 645	 37, 1221-1233 (2014). 25. De Smet, W. H. & Gibson, J. A. E. <i>Rhinoglena kutikovae</i> n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. <i>Polar Biol.</i> 31, 595-603 (2008). 26. Terauds, A. <i>et al.</i> Conservation biogeography of the Antarctic. <i>Divers. Distrib.</i> 18,
640 641 642 643 644 645 646	 37, 1221-1233 (2014). 25. De Smet, W. H. & Gibson, J. A. E. <i>Rhinoglena kutikovae</i> n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. <i>Polar Biol.</i> 31, 595-603 (2008). 26. Terauds, A. <i>et al.</i> Conservation biogeography of the Antarctic. <i>Divers. Distrib.</i> 18, 726-741 (2012).
640 641 642 643 644 645 646 647	 37, 1221-1233 (2014). 25. De Smet, W. H. & Gibson, J. A. E. <i>Rhinoglena kutikovae</i> n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. <i>Polar Biol.</i> 31, 595-603 (2008). 26. Terauds, A. <i>et al.</i> Conservation biogeography of the Antarctic. <i>Divers. Distrib.</i> 18, 726-741 (2012). 27. Hughes, K., Pertierra, L., Molina-Montenegro, M. & Convey, P. Biological
640 641 642 643 644 645 646 647 648	 37, 1221-1233 (2014). 25. De Smet, W. H. & Gibson, J. A. E. <i>Rhinoglena kutikovae</i> n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. <i>Polar Biol.</i> 31, 595-603 (2008). 26. Terauds, A. <i>et al.</i> Conservation biogeography of the Antarctic. <i>Divers. Distrib.</i> 18, 726-741 (2012). 27. Hughes, K., Pertierra, L., Molina-Montenegro, M. & Convey, P. Biological invasions in terrestrial Antarctica: what is the current status and can we respond?
640 641 642 643 644 645 645 646 647 648 649	 37, 1221-1233 (2014). 25. De Smet, W. H. & Gibson, J. A. E. <i>Rhinoglena kutikovae</i> n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. <i>Polar Biol.</i> 31, 595-603 (2008). 26. Terauds, A. <i>et al.</i> Conservation biogeography of the Antarctic. <i>Divers. Distrib.</i> 18, 726-741 (2012). 27. Hughes, K., Pertierra, L., Molina-Montenegro, M. & Convey, P. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? <i>Biodivers. Conserv.</i> 24, 1031-1055 (2015).
640 641 642 643 644 645 646 647 648 649 650	 37, 1221-1233 (2014). 25. De Smet, W. H. & Gibson, J. A. E. <i>Rhinoglena kutikovae</i> n.sp. (Rotifera: Monogononta: Epiphanidae) from the Bunger Hills, East Antarctica: a probable relict species that survived Quaternary glaciations on the continent. <i>Polar Biol.</i> 31, 595-603 (2008). 26. Terauds, A. <i>et al.</i> Conservation biogeography of the Antarctic. <i>Divers. Distrib.</i> 18, 726-741 (2012). 27. Hughes, K., Pertierra, L., Molina-Montenegro, M. & Convey, P. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? <i>Biodivers. Conserv.</i> 24, 1031-1055 (2015). 28. Hogg, I. D. <i>et al.</i> Biotic interactions in Antarctic terrestrial ecosystems: Are they a

652	29. Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators:
653	effects on the spatial distribution of African ungulates. <i>Ecology</i> 92 , 398-407 (2011).
654	30. Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and
655	composition. <i>Nature</i> 506 , 85-88 (2014).
656	31. Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 282, 104-
657	115 (2003).
658	32. Braithwaite, R. J. & Raper, S. C. B. Glaciological conditions in seven contrasting
659	regions estimated with the degree-day model. Ann. Glaciol. 46, 297-302 (2007).
660	33. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their
661	extensions from 1765 to 2300. Clim. Chang. 109, 213-241 (2011).
662	34. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working
663	Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
664	Change (eds. Stocker, T.F. et al.) (IPCC, Cambridge University Press, 2013).
665	35. Hock, R., de Woul, M., Radić, V. & Dyurgerov, M. Mountain glaciers and ice caps
666	around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett. 36,
667	doi:10.1029/2008GL037020 (2009).
668	36. Peters, G. P. et al. The challenge to keep global warming below 2°C. Nature Clim.
669	<i>Chang.</i> 3 , 4-6 (2013).
670	37. Heller, N. E. & Zavaleta, E. S. Biodiversity management in the face of climate
671	change: A review of 22 years of recommendations. Biol. Conserv. 142, 14-32
672	(2009).
673	38. Rubidge, E. M. et al. Climate-induced range contraction drives genetic erosion in
674	an alpine mammal. Nature Clim. Chang. 2, 285-288 (2012).

675	39. Olech, M. & Chwedorzewska, K. J. Short Note: The first appearance and
676	establishment of an alien vascular plant in natural habitats on the forefield of a
677	retreating glacier in Antarctica. Antarct. Sci. 23, 153-154 (2011).
678	40. Chown, S. L. et al. Continent-wide risk assessment for the establishment of
679	nonindigenous species in Antarctica. Proc. Natl. Acad. Sci. USA 109, 4938-4943
680	(2012).
681	41. Golledge, N. R., Everest, J. D., Bradwell, T. & Johnson, J. S. Lichenometry on
682	Adelaide Island, Antarctic Peninsula: size-frequency studies, growth rates and
683	snowpatches. Geogr. Ann. 92, 111-124 (2010).
684	42. Molina-Montenegro, M.A., Carrasco-Urra, F., Rodrigo, C., Convey, P., Valladares,
685	F. & Gianoli, E. Occurrence of the non-native annual bluegrass on the Antarctic
686	mainland and its negative effects on native plants. Conserv. Biol. 26, 717–723
687	(2012).
688	43. McGeoch, M. A., Shaw, J. D., Terauds, A., Lee, J. E. & Chown, S. L. Monitoring
689	biological invasion across the broader Antarctic: A baseline and indicator
690	framework. Glob. Environ. Chang. 32, 108-125 (2015).
691	44. Forcada, J. & Trathan, P. N. Penguin responses to climate change in the Southern
692	Ocean. Glob. Chang. Biol. 15, 1618-1630 (2009).
693	45. Frenot, Y. et al. Biological invasions in the Antarctic: extent, impacts and
694	implications. Biol. Rev. 80, 45-72 (2005).
695	46. Van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences
696	between invasive and non-invasive plant species. Ecol. Lett. 13, 235-245 (2010).
697	47. Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the
698	Antarctic Peninsula over the past 50 years. The Cryosphere 4, 77-98 (2010).

699	48. Kennicutt, M. C. I. et al. A roadmap for Antarctic and Southern Ocean science for
700	the next two decades and beyond. Antarct. Sci. 27, 3-18 (2015).
701	49. Robinson, S. A., Wasley, J. & Tobin, A. K. Living on the edge – plants and global
702	change in continental and maritime Antarctica. Glob. Chang. Biol. 9, 1681-1717
703	(2003).
704	50. United Nations Framework Convention on Climate Change. Conference of the
705	Parties to the United Nations Framework Convention on Climate Change.
706	(UNFCCC, 2015).
707 708	Methods Only References
709	
710	51. Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for
711	Antarctica. The Cryosphere 7, 375-393 (2013).
712	52. Hock, R. Glacier melt: a review of processes and their modelling. Prog. Phys. Geogr.
713	29 , 362-391 (2005).
714	53. Ebnet, A. F., Fountain, A. G., Nylen, T. H., McKnight, D. M. & Jaros, C. L. A
715	temperature-index model of stream flow at below-freezing temperatures in Taylor
716	Valley, Antarctica. Ann. Glaciol. 40, 76-82 (2005).
717	54. Hock, R. A distributed temperature-index ice- and snowmelt model including
718	potential direct solar radiation. J. Glaciol. 45, 101-111 (1999).
719	55. Hawes, T. C. Antarctica's geological arks of life. J. Biogeog., 42, 207-208 (2015).
720	56. Powers J. G. et al. Real-time mesoscale modeling over Antarctica: The Antarctic
721	Mesoscale Prediction System (AMPS). Bull. Am. Meteorol. Soc. 84, 1533-1545
722	(2003).

723	57. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the
724	data assimilation system. Q. J. R. Meteorol. Soc. 137, 553-597 (2011).
725	58. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An Overview of CMIP5 and the
726	Experiment Design. Bull. Am. Meteorol. Soc. 93, 485-498 (2012).
727	59. Van Lipzig, N. P. M., King, J. C., Lachlan-Cope, T. A., & Van den Broeke M.R.
728	Precipitation, sublimation and snow drift in the Antarctic Peninsula region from a
729	regional atmospheric model, J. Geophys. Res. 109, doi:10.1029/2004JD004701
730	(2004).
731	60. Hosking, J. S., Orr, A., Bracegirdle, T.J., & Turner, J. Future circulation changes off
732	West Antarctica: Sensitivity of the Amundsen Sea Low to projected anthropogenic
733	forcing. Geophys. Res. Lett. 43, 367-376 (2016).
734	61. Bracegirdle, T. J., & Stephenson, D. B. Higher precision estimates of regional polar
735	warming by ensemble regression of climate model projections. Clim. Dyn. 39, 2805-
736	2821 (2012).
737	62. Kumar, L., Skidmore, A. K. & Knowles, E. Modelling topographic variation in solar
738	radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 11, 475-497 (1997).
739	63. Barrand, N. E. et al. Trends in Antarctic Peninsula surface melting conditions from
740	observations and regional climate modeling. J. Geophys. Res. F: Earth Surf. 118, 315-
741	330 (2013).
742	64. Rott, H., Rack, W., Skvarca, P. & De Angelis, H. Northern Larsen Ice Shelf,
743	Antarctica: further retreat after collapse. Ann. Glaciol. 34, 277-282 (2002).
744	65. Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves.
745	Nature 484, 502-505 (2012).

746	66. Shaw, J. D., Terauds, A., Riddle, M. J., Possingham, H. P. & Chown, S. L.
747	Antarctica's Protected Areas Are Inadequate, Unrepresentative, and at Risk. PLoS
748	<i>Biol.</i> 12 , e1001888 (2014).
749	67. Fraser, C. I., Terauds, A., Smellie, J., Convey, P. & Chown, S. L. Geothermal activity
750	helps life survive glacial cycles. Proc. Natl. Acad. Sci. USA 111, 5634-5639 (2014).
751	68. R Core Team. R: A language and environment for statistical computing. R Foundation
752	for Statistical Computing, Vienna, Austria. http://www.R-project.org (2016).
753	
/54	Supplementary Information is available in the online version of the paper.
755	
756	Acknowledgements
757	
758	This project was supported by the Holsworth Wildlife Research Endowment – Equity
759	Trustees Charitable Foundation, the Australian Antarctic Science Program (projects 4296 and
760	4297) and the Ecological Society of Australia. IC was supported by a CSIRO Julius Career
761	award, and RAF by an Australian Research Council Future Fellowship. We thank J. Rhodes,
762	S. Robinson, M. Stafford Smith and A. Richardson for discussions and valuable feedback on
763	this project.
764	
765	We acknowledge the World Climate Research Programme's Working Group on Coupled
766	Modelling, which is responsible for CMIP, and we thank the climate modeling groups for
767	producing and making available their model output (listed in Supplementary Table 5 of this
768	paper). For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis
769	and Intercomparison provides coordinating support and led development of software
770	infrastructure in partnership with the Global Organization for Earth System Science Portals.

771	We thank the National Centre for Atmospheric Research, the University Corporation for
772	Atmospheric Research and the Byrd Polar and Climate Research Center who are responsible
773	for AMPS and the European Centre for Medium-Range Weather Forecasts who are
774	responsible for the ERA-interim reanalysis data.
775	
776	Author Contributions
777	
778	J.L. and A.T. conceived the idea. T.B. and B.R. generated the climate data. J.L. designed and
779	undertook the melt modelling, analysed the data and led the writing with contributions from
780	all other authors.
781	
782	Author Information
783	
784	The future ice-free area layers are available through the Australian Antarctic Data Centre
785	(AADC - data.aad.gov.au DOI Pending). Reprints and permissions information is available
786	at www.nature.com/reprints. The authors declare no competing financial interests.
787	Correspondence and requests for materials should be addressed to J.L.
788	(jasmine.lee1@uqconnect.edu.au).

Extended Data Figure 1. Projected 21st century climate change between 2014 and 2098

under RCP4.5, showing *a*) the change in degree days, *b*) the change in precipitation rate

(mm/yr), and *c*) projected melt (m) using mean melt coefficients.

Extended Data Table 1. Lower, mean and upper bounds of new ice-free area (km²)
projected under two IPCC climate change scenarios for the Antarctic continent by the year
2098, using subset ensemble mean models. Bounds refer to the lower and upper ice melt
coefficients used to derive melt projections for each of the RCPs. Results for full-ensemble
ER mean models are available in Extended Data Table 2.

800

	Lower Bound	Mean	Upper Bound
RCP4.5	2,100	7,708	10,205
RCP8.5	7,847	14,027	17,267

801

802
803 Extended Data Table 2. Lower, mean and upper bounds of new ice-free area (km²)

804 projected under two IPCC climate change scenarios for the Antarctic continent by the year

2098, using full-ensemble ER mean models. Bounds refer to the lower and upper ice melt

so coefficients used to derive melt projections for each of the RCPs.

807

	Lower Bound	Mean	Upper Bound
RCP2.6	0	910	1,902
RCP4.5	534	4,305	7,088
RCP8.5	5,971	11143	14,112

Extended Data Figure 2. New Antarctic ice-free area (km²) predicted to emerge between
2014 and 2098 under the 'mean' melt scenario for RCP4.5. Grid cell resolution is 50 km in

813 the continental map and 10 km in the Antarctic Peninsula inset.

820 Extended Data Table 3. Current and future values of bioregional (and continental: C) ice-

821 free area metrics under RCP8.5, mean melt coefficients (mean area of ice-free patches (km²),

total ice-free area (km²), number of ice-free patches, mean distance to nearest neighbour (m),

mean distance to neighbours within 10km (km), mean number of neighbours within 10 km). *

denotes significant change between current and scenario values (p-value <0.01, see

Supplementary Tables 1 - 4). Metrics for RCP4.5 are shown in Extended Data Table 4.

ACBR	R Mean area		Total	Area	No. (of IF	Mean d	list NN	M dist 10	ean NN km	Mea N 1	n No. 0 km
	С	8.5	С	8.5	С	8.5	С	8.5	С	8.5	С	8.5
2	1.5	15.2	160	623	105	41	633	438*	5.5	4.3*	18.7	8.4*
3a	1.2	6.6*	6,398	18,853	5,534	2,872	705	835	5.7	5.4*	29.0	19.6*
4	1.1	1.4	4,962	5,993	4,556	4,327	813	849	5.7	5.8	25.0	24.6
5	2.2	2.2	2,188	2,192	989	987	1,663	1,667	5.1	5.1	10.0	10.0
6	5.3	5.3	5,523	5,523	1,040	1,040	1,972	1,972	5.0	5.0	8.8	8.8
7	3.5	3.4	1,109	1,161	320	341	2,173	2,029	4.9	4.9	21.5	27.0*
8	2.2	2.2	9,431	9,437	4,322	4,322	840	840	5.7	5.7	22.7	22.7
9	12.8	12.8	10,038	10,038	784	784	1,332	1,332	5.1	5.1	9.8	9.8
10	5.5	5.5	18,480	18,480	3,344	3,344	1,199	1,199	5.4	5.4	12.3	12.3
11	5.4	5.4	2,859	2,859	526	526	1,133	1,133	5.5	5.5	14.1	14.1
12	2.4	2.4	1,128	1,136	472	472	2,563	2,604	4.8	4.8	6.3	6.3
13	1.7	1.7	179	179	106	106	4,327	4,327	4.8	4.8	8.2	8.2
14	1.3	1.3	217	219	172	172	3,273	3,268	4.4	4.4	5.5	5.5
15	1.5	1.5	2,875	2,875	1,855	1,855	1,141	1,141	5.7	5.7	19.4	19.4
16	9.2	9.2	5,992	5,995	651	650	2,345	2,346	4.8	4.8	8.4	8.4
С	2.9	3.9	71,537	85,564	24,776	21,839	1,098	1,174	5.5	5.5	20.3	18.0

827 Extended Data Table 4. Current and future values of bioregional (and continental: C) ice-

828 free area metrics under RCP4.5, mean melt coefficients (mean area of ice-free patches (km²),

total ice-free area (km²), number of ice-free patches, mean distance to nearest neighbour (m),

mean distance to neighbours within 10 km (km), mean number of neighbours within 10 km).

* denotes significant change between current and scenario values (p-value <0.01, see

Supplementary Tables 1 - 4). Metrics for RCP8.5 are shown in Extended Data Table 3.

ACBR	R Mean area		Total	Area	No. (of IF	Mean d	list NN	Mo dist 10	ean NN km	Mea N 1	n No.) km
	С	4.5	С	4.5	С	4.5	С	4.5	C	4.5	С	4.5
2	1.5	15.2	160	623	105	41	633	438*	5.5	4.3*	18.7	8.4*
3a	1.2	3.2*	6,398	13,575	5,534	4,232	705	722*	5.7	5.6*	29.0	27.3*
4	1.1	1.1	4,962	5,030	4,556	4,537	813	813	5.7	5.7	25.0	25.0
5	2.2	2.2	2,188	2,188	989	989	1,663	1,663	5.1	5.1	10.0	10.0
6	5.3	5.3	5,523	5,523	1,040	1,040	1,972	1,972	5.0	5.0	8.8	8.8
7	3.5	3.5	1,109	1,109	320	320	2,173	2,173	4.9	4.9	21.5	21.5
8	2.2	2.2	9,431	9,431	4,322	4,322	840	840	5.7	5.7	22.7	22.7
9	12.8	12.8	10,038	10,038	784	784	1,332	1,332	5.1	5.1	9.8	9.8
10	5.5	5.5	18,480	18,480	3,344	3,344	1,199	1,199	5.4	5.4	12.3	12.3
11	5.4	5.4	2,859	2,859	526	526	1,133	1,133	5.5	5.5	14.1	14.1
12	2.4	2.4	1,128	1,128	472	472	2,563	2,563	4.8	4.8	6.3	6.3
13	1.7	1.7	179	179	106	106	4,327	4,327	4.8	4.8	8.2	8.2
14	1.3	1.3	217	217	172	172	3,273	3,273	4.4	4.4	5.5	5.5
15	1.5	1.5	2,875	2,875	1,855	1,855	1,141	1,141	5.7	5.7	19.4	19.4
16	9.2	9.2	5,992	5,992	651	651	2,345	2,345	4.8	4.8	8.4	8.4
C	2.9	3.4	71,537	79,245	24,776	23,391	1,098	1,125	5.5	5.5	20.3	19.5

Extended Data Figure 5. Annual mean surface air temperature (at 2 metres) anomalies for

a) 2014, **b**) 2015 and **c**) 2014-2015. The anomalies are relative to the period 1979 through

- 840 2015. The source of data is the ECMWF ERA-interim re-analysis (Dee et al. 2011).
- 841
- 842 **Extended Data Table 5.** Coefficients used in melt calculations and the method by which
- they were calculated. Where a is the radiation coefficient, DDF is the degree day factor and
- 844 *MF* is the melt factor.
- 845

Bound	$a (m^2 W^{-1})$	Method	DDF	Method	MF (mm	Method
	mm d ⁻¹	coefficient	(mm d ⁻¹	coefficient	d ⁻¹ °C ⁻¹)	coefficient
	°C-1)	calculated	°C-1)	calculated		calculated
Lower	0.0158	(mean of all	2.87	(mean of all	0.94	MF = 2.87 -
Bound		literature <i>a</i>		literature		(0.0158 *
		values for		DDF values		121.862)
		snow)		for snow		
				minus STD)		
Upper	0.0223	(mean of all	14.19	(mean of all	11.47	MF = 14.19 -
Bound		literature a		literature		(0.0223 *
		values for		DDF values		121.862)
		ice)		for ice plus		
				STD)		
Medium	0.019	(mean of	8.53	(mean of	6.21	MF = 8.53 -
(best guess)		upper and		upper and		(0.019 *
		lower		lower bound)		121.862)
		bound)		, ,		,

*Due to the large variation in recorded DDF's (Supplementary Table 6) STD was used for

calculating the DDF for lower and upper bounds in order to give robust estimates of melt

848 rates.

849 Supplementary Material

850

851 Supplementary Table 1. ANOVA analysis of log-transformed "total ice-free area" for

ACBR	F-statistic	P value (Current –	P value (Current –
		RCP4.5)	RCP8.5)
2	$F_{2,185} = 0.12$	0.696	0.696
3a	$F_{2,12635} = 41.68$	< 0.001	< 0.001
4	$F_{2,13417} = 0.004$	0.954	0.977
5	$F_{2,2962} = 0.001$	1.0	0.972
6	$F_{2,3117} = < 0.001$	1.0	1.0
7	$F_{2,978} = 2.225$	1.0	0.07
8	$F_{2,12963} = < 0.001$	1.0	1.0
9	$F_{2,2349} = < 0.001$	1.0	1.0
10	$F_{2,10029} = < 0.001$	1.0	1.0
11	F _{2,1575} = <0.001	1.0	1.0
12	$F_{2,1413} = 0.005$	1.0	0.933
13	$F_{2,315} = < 0.001$	1.0	1.0
14	$F_{2,513} = 0.008$	1.0	0.911
15	$F_{2,5562} = < 0.001$	1.0	1.0
16	$F_{2.1949} = 0.006$	1.0	0.927

subset ensemble mean models, mean melt coefficients.

853

854

855

856 Supplementary Table 2. ANOVA analysis of log-transformed "mean distance to nearest

neighbour" for subset ensemble mean models, mean melt coefficients.

ACBR	F-statistic	P value (Current –	P value (Current –
		RCP4.5)	RCP8.5)
2	$F_{2,184} = 6.697$	< 0.005	< 0.005
3a	$F_{2,12635} = 3.849$	0.006	0.159
4	$F_{2,13417} = 0.035$	0.964	0.805
5	$F_{2,2962} = 0.004$	1.0	0.935
6	F _{2,3117} = <0.001	1.0	1.0
7	$F_{2,978} = 1.164$	1.0	0.189
8	F _{2,12963} = <0.001	1.0	1.0
9	$F_{2,2349} = < 0.001$	1.0	1.0
10	$F_{2,10029} = < 0.001$	1.0	1.0
11	$F_{2,1575} = < 0.001$	1.0	1.0
12	$F_{2,1413} = 0.002$	1.0	0.961
13	$F_{2,315} = < 0.001$	1.0	1.0
14	$F_{2,513} = < 0.001$	1.0	0.992
15	$F_{2,5562} = < 0.001$	1.0	1.0
16	$F_{2,1949} = 0.003$	1.0	0.944

858 **Supplementary Table 3**. ANOVA analysis of "mean distance to neighbours within 10km"

ACBR	F-statistic	P value (Current –	P value (Current –
		RCP4.5)	RCP8.5)
2	$F_{2,184} = 14.41$	< 0.001	< 0.001
3a	$F_{2,12591} = 75.41$	0.008	< 0.001
4	$F_{2,13373} = 0.032$	0.979	0.818
5	$F_{2,2911} = < 0.001$	1.0	0.978
6	$F_{2,3012} = < 0.001$	1.0	1.0
7	$F_{2,957} = 0.008$	1.0	0.911
8	$F_{2,12933} = < 0.001$	1.0	1.0
9	$F_{2,2337} = < 0.001$	1.0	1.0
10	$F_{2,9975} = < 0.001$	1.0	1.0
11	$F_{2,1572} = < 0.001$	1.0	1.0
12	$F_{2,1331} = < 0.001$	1.0	0.992
13	$F_{2,291} = < 0.001$	1.0	1.0
14	$F_{2,480} = < 0.001$	1.0	0.986
15	$F_{2,5511} = < 0.001$	1.0	1.0
16	$F_{2,1862} = < 0.001$	1.0	0.99

859 for subset ensemble mean models, mean melt coefficients.

860

861

862 Supplementary Table 4. ANOVA analysis of "mean number of neighbours within 10km"

863 for subset ensemble mean models, mean melt coefficients.

ACBR	F-statistic	P value (Current –	P value (Current –
		RCP4.5)	RCP8.5)
2	$F_{2,184} = 70.74$	< 0.001	< 0.001
3a	$F_{2,12635} = 428.2$	< 0.005	< 0.001
4	$F_{2,13417} = 0.966$	0.995	0.228
5	$F_{2,2962} = 0.001$	1.0	0.975
6	F _{2,3117} = <0.001	1.0	1.0
7	$F_{2,978} = 10.8$	1.0	< 0.001
8	$F_{2,12963} = < 0.001$	1.0	1.0
9	$F_{2,2349} = < 0.001$	1.0	1.0
10	$F_{2,10029} = < 0.001$	1.0	1.0
11	F _{2,1575} = <0.001	1.0	1.0
12	$F_{2,1413} = 0.001$	1.0	0.976
13	$F_{2,315} = < 0.001$	1.0	1.0
14	$F_{2,513} = < 0.001$	1.0	1.0
15	$F_{2,5562} = < 0.001$	1.0	1.0
16	$F_{2,1949} = 0.001$	1.0	0.972

	Latitude grid spacing		
Model name	(°)	RCP4.5	RCP8.5
ACCESS1.0	1.3	Х	Х
ACCESS1.3	1.3	Х	Х
BCC-CSM1.1	2.8	Х	Х
BCC-CSM1.1(m)	1.1	Х	Х
BNU-ESM	2.8	Х	х
CanESM2	2.8	Х	X
CCSM4	0.9	Х	х
CESM1(BGC)	0.9	Х	х
CESM1(CAM5)	0.9	Х	X
CESM1(WACCM)	1.9	Х	X
CMCC-CESM	3.4		X
CMCC-CM	0.7	Х	X
CMCC-CMS	1.9	Х	X
CNRM-CM5	1.4	Х	X
CSIRO-Mk3.6.0	1.9	Х	X
EC-EARTH	1.1	Х	X
FGOALS-g2	2.8	Х	X
FIO-ESM	2.8	Х	X
GFDL-CM3	2	Х	X
GFDL-ESM2G	2	Х	х
GFDL-ESM2M	2	Х	X
GISS-E2-H	2	Х	X
GISS-E2-H-CC	2	Х	х
GISS-E2-R	2	Х	X
GISS-E2-R-CC	2	Х	X
HadGEM2-AO	1.3	Х	х
HadGEM2-CC	1.3	Х	X
HadGEM2-ES	1.3	Х	X
INM-CM4	1.5	Х	х
IPSL-CM5A-LR	1.9	Х	X
IPSL-CM5A-MR	1.3	Х	X
IPSL-CM5B-LR	1.9	Х	х
MIROC-ESM-CHEM	2.8	Х	х
MIROC5	1.4	Х	Х
MPI-ESM-LR	1.9	Х	Х
MPI-ESM-MR	1.9	Х	Х
MRI-CGCM3	1.1	Х	Х
MRI-ESM1	1.1		X
NorESM1-M	1.9	Х	Х
NorESM1-ME	1.9	Х	Х

Supplementary Table 5. List of CMIP5 models used in this study.

867 **Supplementary Table 6.** Degree day factor (DDF) values obtained from the literature.

868 (to be included as an excel file)

	Valua				Was the value	
Measurement Type	(mm d- 1 °C-1)	Paper	Site	Country	cited from another paper?	Other paper (if required)
Ice	5.4	Hock 1999	Storglaciaren	Sweden	N	
Ice	5.5	Braithwaite 1995	Norway	Norway	Y	Braithwaite 1977
		Braithwaite	Nigardsbreen	Norway		Laumman &
Ice	5.5	1995	_		Y	Reeh 1993
Ice	5.5	Braithwaite 1995	Hellstugubreen	Norway	Y	Laumman & Reeh 1993
Ice	5.5	Hock 2003	John Evans Glacier	Canada	Y	Arendt & Sharp (1999)
				Antarctic	Y/N	
Ice	5.5	Vaughn 2006		Penisula		
Ice	5.9	Hock 2003	Hans Tausen Ice Cap	Greenland	Y	Braithwaite et al. 1998
Ice	6.0	Hock 1999	Storglaciaren	Sweden	Ν	
Ice	6.0	Braithwaite 1995	Swiss glaciers	Switzerland	Y	Kasser 1959
		Braithwaite	Franz Josef	New Zealand		Woo &
Ice	6.0	1995	Glacier		Y	Fitzharris 1992
Ice	6.0	Braithwaite 1995	Alfotbreen	Norway	Y	Laumman & Reeh 1993
Ice	6.2	Braithwaite & Zhang 2000	Glacier de Sarennes	France	Y	Vincent & Vallon 1997
Ice	6.3	Hock 1999	Storglaciaren	Sweden	N	
Ice	6.3	Braithwaite 1995	Store Supphellebre	Norway	Y	Orheim 1970
Ice	6.3	Braithwaite 1995	Artic Canada	Canada	Y	Braithwaite 1981
Ice	6.4	Hock 1999	Storglaciaren	Sweden	Ν	
Ice	6.4	Braithwaite 1995	Nigardsbreen	Norway	Y	Johannesson et al. 1993; 1995
Ice	6.6	Hock 2003	Rakhiot Glacier	Himalayas	Y	Kayastha et al. 2000
		Braithwaite &		Patagonia	Y	Takeuchi et al.
Ice	6.9	Zhang 2000		Ū		1996
	7.0	Fausto et al. 2009; Greve	Greenland Ice Sheet	Greenland	Ν	
Ice		2005				
Ice	7.0	Hock 2003	Thule Ramp	Greenland	Y	Schytt 1955
Ice	7.1	Hock 2003	Morenoglacier	Argentina	Y	Takeuchi et al. 1996
		Hock 2003	John Evans	Canada		Arendt & Sharp
Ice	7.1		Glacier		Y	(1999)
		Hock 2003	Qamanarssup sermia (West	Greenland	Y	Johannesson et al. 1995
Ice	7.3		Greenland)			

Ice	7.4	Hock 2003	Dokriani Glacier	Himalayas	Y	Singh et al.
	7.4	Braithwaite	Nordbogletscher	Greenland	N	2000
	1.5	1995	(West	Greenhand	11	
Ice		1770	Greenland)			
		Hock 2003	John Evans	Canada	Y	Arendt & Sharp
Ice	7.6	110011 2000	Glacier	Culture	-	(1999)
		Braithwaite	Satujokull	Iceland	Y	Johannesson et
Ice	7.7	1995				al. 1993; 1995
		Lefebre et al.		West	Ν	
Ice	8.0	2002		Greenland		
		Hock 2003	Glacier AX010	Himalayas		Kayastha et al.
Ice	8.1				Y	2000
	8.2	Braithwaite	Qamanarssup	Greenland	Ν	
		1995	sermia (West			
Ice			Greenland)			
-	~ -	Hock 2003	GIMEX profile	Greenland	Y	Van de Wal
lce	8.7		C1 1 1 1 1 1 1 1 1 1 			1992
т	0.0	Hock 2003	Glacier AX010	Himalayas	Y	Kayastha et al.
Ice	8.8	D 11 1 0		0 4 1 1	N	2000
Inc	8.0	Braithwaite &	Griesgletscher	Switzerland	N	
lce	8.9	Zhang 2000	CIMEN anofile	Crearland		Van de Wel
Inc	0.2	HOCK 2005	GIMEX profile	Greenland	V	van de wai
Ice	9.2	Healt 2002	Vala Clasier	Himoloyog	I V	1992 Kayaatha 2001
Ice	9.5	Hock 2003	Vronpring	Groonland		Rayasula 2001
Ice	0.8	110CK 2003	Christian Land	Oreemanu	1	al 1008
Ice	10.1	Hock 2003	Vala Glacier	Himalayas	v	Kayastha 2001
lee	10.1	Pellicciotti et	Haut Glacier	Switzerland	N I	Kayasula 2001
Ice	10.0	al 2005	Haut Glacier	Switzerland	1	
Ice	11.7	Hock 2003	Aletscholetscher	Switzerland	Y	Lang 1986
Ice	12.0	Hock 2003	Thule Ramp	Greenland	Y	Schytt 1955
100	13.8	Braithwaite	Vestfonna	Norway	-	
Ice		1995	(Spistbergen)		Y	Schvtt 1964
	15.0	Fausto et al.	Greenland Ice	Greenland	N	
		2009; Greve	Sheet			
Ice		2005				
		Hock 2003	Khumbu Glacier	Himalayas		Kayastha et al.
Ice	16.9				Y	2000
		Lefebre et al.	ETH Camp	West	Ν	
Ice	17.5	2002		Greenland		
Ice	18.6	Hock 2003	Camp IV-EGIG	Greenland	Y	Ambach 1988
_		Hock 2003	GIMEX profile	Greenland	Y	Van de Wal
lce	20.0					1992
		Moris 1999	Moraine Corrie	Antarctica	N	
			Glacier;			
Inc	22.0		Antarctic			
Ice	55.0	Smith at al	remnsula	Antoratio		
Snow	2 17		Rothern Doint	Antarctic Denisulo	N	
SIIUW	2.1/	1770	John Evans	i cinsula	1N	Arendt & Sharn
Snow	2 70	Hock 2003	Glacier	Canada	v	1999
5110 W	2.70	Braithwaite &	Oamanarseun	West	1	Iohannesson et
Snow	2.80	Zhang 2000	sermia	Greenland	Y	al. 1993 (Hock
~					-	

						2003 has
						recorded this as:
						Johannesson et
						al. 1995)
	2.90	Braithwaite	Nordbogletscher	Greenland	Ν	
		1995	(West			
Snow			Greenland)			
		Huss &	Silvrettagletsche			
Snow	2.96	Bauder 2009	r	Switzerland	Ν	
	3.00	Fausto et al.	Greenland Ice			
	2100	2009: Greve	Sheet			
Snow		2005	Sheet			
5110 W		Braithwaite et	Franz Josef			Woo &
Snow	3.00	al 1995	Glacier	New Zealand	V	Fitzharris 1992
Bildw	5.00	L efebre et al	Glueiei	West	1	
Snow	3.00	2003		Greenland	N	
Sliow	2 20	Look at al	Storglagioron	Sweden	N	
C	5.20		Storgraciaren	Sweden	IN	
Snow	2.40	1999	C1 1 1 100		NT	
a	3.49	Braithwaite et	Global – 180		N	
Snow		al. 2006	glaciers			
		Braithwaite et				Laumann &
Snow	3.50	al. 1995	Hellstugubreen	Norway	Y	Reeh 1993
	3.70	Braithwaite	Qamanarssup	Greenland	Ν	
		1995	sermia (West			
Snow			Greenland)			
		Huss &				
Snow	3.73	Bauder 2009	Clarindenfirn	Switzerland	Ν	
		Braithwaite &	Glacier de			Vincent &
Snow	3.80	Zhang 2000	Sarennes	France	Y	Vallon 1997
			John Evans			Arendt & Sharp
Snow	3.90	Hock 2003	Glacier	Canada	Y	1999
		Huss &				
Snow	3 93	Bauder 2009	Clarindenfirn	Switzerland	Ν	
Show	3.96	Braithwaite et	Global – 180	Switzeritaita	N	
Snow	5.70	al 2006	glaciers		1	
Show			Gr			
Snow	3.07	Rouder 2000	UI. Alatshalatschar	Switzerland	N	
SIIOW	5.97	Daudel 2009	Aletsligietschei	Switzerfallu	19	Loumonn &
C	4.00	ol 1005	Nicondalaraa	Nomi	V	Laumann &
Snow	4.00	al. 1993	Inigarusbreen	INOFWAY	ľ	
G	4.10	H. 1 2002	Jonn Evans	Cara 1		Arendt & Sharp
Snow	4.10	Hock 2003	Glacier	Canada	Y N	1999
Snow	4.40	Hock 1999	Storglaciaren	Sweden	<u>N</u>	
	4.40	Braithwaite et	Global – 180		Ν	
Snow		al. 2006	glaciers			
						Johannesson et
						al. 1993 (Hock
						2003 has
						recorded this as:
		Braithwaite et				Johannesson et
Snow	4.40	al. 1995	Nigardsbreen	Norway	Y	al. 1995)
		Braithwaite et	-			Laumann &
Snow	4.50	al. 1995	Alfotbreen	Norway	Y	Reeh 1993
		Braithwaite &				
Snow	4.50	Zhang 2000	5 Swiss Glaciers	Switzerland		
						1

		Braithwaite &				
Snow	4.50	Zhang 2000	Weissflujoch	Switzerland	Y	Zingg 1951
		Braithwaite &				De Quervain
Snow	4.50	Zhang 2000	Weissflujoch	Switzerland	Y	1979
						Lang et al. 1976
						(Hock 2003
						records this as:
		Braithwaite et	Gr.			Lang et al.
Snow	5.40	al. 1995	Aletshgletscher	Switzerland	Y	1986)
		Lefebre et al.		West		
Snow	5.48	2002	ETH Camp	Greenland	Ν	
			Antarctic			
Snow	5.50	Vaughn 2006	Peninsula	Antarctica	Y/N	
			John Evans			Arendt & Sharp
Snow	5.50	Hock 2003	Glacier	Canada	Y	1999
						Johannesson et
						al. 1993 (Hock
						2003 has
						recorded this as:
		Braithwaite et				Johannesson et
Snow	5.70	al. 1995	Satujokull	Iceland	Y	al. 1995)
						Singh et al.
Snow	5.70	Hock 2003	Dokriani Glacier	Himalyas	Y	2000
						Singh & Kumar
Snow	5.90	Hock 2003	Dokriani Glacier	Himalyas	Y	1996
		Smith et al.		Antarctic		Jamieson &
Snow	6.00	1998	Spartan Glacier	Penisula	Y	Wager 1983
			White &			
		Smith et al.	Sverdrup	Arctic		Braithwaite
Snow	6.30	1999	Glaciers	Canada	Y	1981
		Szafraniec				
Snow	6.50	2002	Hansbreen	Svalbard	N	
						Kayastha et al.
Snow	7.30	Hock 2003	Glacier AX010	Himalyas	Y	2000
	7.68	Pellicciotti et	Haut Glacier,			
Snow		al. 2005	Switzerland			
						Kayastha et al.
Snow	8.70	Hock 2003	Glacier AX010	Himalyas	Y	2000
						Kayastha et al.
Snow	11.60	Hock 2003	Glacier AX010	Himalyas	Y	2000

Value (mm d ⁻¹ °C ⁻¹⁾	Paper	Site	Country
1.8	Hock et al. 1999	Storglaciaren	Sweden
1.97	Pellicciotti et al.	Haut Glacier	Switzerland
	2005		
0.49	Huss et al. 2009	Clariden Upper	European Alps
0.52	Huss et al. 2009	Clariden Lower	European Alps
0.5	Huss et al. 2009	Aletsch	European Alps
0.43	Huss et al. 2009	Silvretta	European Alps

Supplementary Table 7. Melt factor (MF) values obtained from the literature.

Supplementary Table 8. Radiation coefficient (a) values obtained from the literature.

Measurement Type	Value (m ² W ⁻¹ mm d ⁻¹ °C ⁻¹)	Paper	Site	Country
Ice	0.0192	Hock et al. 1999	Storglaciaren	Sweden
Ice	0.0254	Pellicciotti et al. 2005	Haut Glacier	Switzerland
Snow	0.0144	Hock et al. 1999	Storglaciaren	Sweden
	0.0125	Pellicciotti et al.	Haut Glacier	Switzerland
Snow		2005		
Snow	0.0172	Huss et al. 2009	Clariden Upper	European Alps
Snow	0.0181	Huss et al. 2009	Clariden Lower	European Alps
Snow	0.0175	Huss et al. 2009	Aletsch	European Alps
Snow	0.0151	Huss et al. 2009	Silvretta	European Alps

Supplementary Table 9. Metrics describing current and future ice-free areas within

877 Antarctic Conservation Biogeographic Regions

Metric Name	Description
Mean area	Mean area of individual ice-free patches
Total area	Total area of all ice-free patches
No. of IF	Number of ice-free patches
Mean dist NN	Mean distance to nearest neighbour
Mean dist NN 10 km	Mean distance to neighbours that fall within 10 km
Mean No. N 10 km	Mean number of neighbours that fall within 10 km