654 research outputs found

    Real-time in-flight engine performance and health monitoring techniques for flight research application

    Get PDF
    Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods

    Real-time in-flight engine performance and health monitoring techniques for flight research application

    Get PDF
    Various engine related performance and health monitoring techniques developed in support of flight research are described. Techniques used during flight to enhance safety and to increase flight test productivity are summarized. A description of the NASA range facility is given along with a discussion of the flight data processing. Examples of data processed and the flight data displays are shown. A discussion of current trends and future capabilities is also included

    Analysis of the Spore Membrane Proteome in Clostridium perfringens Implicates Cyanophycin in Spore Assembly.

    Get PDF
    UnlabelledHeat-resistant endospore formation plays an important role in Clostridium perfringens-associated foodborne illnesses. The spores allow the bacterium to survive heating during normal cooking processes, followed by germination and outgrowth of the bacterium in contaminated foods. To identify proteins associated with germination and other spore functions, a comparative spore membrane proteome analysis of dormant and germinated spores of C. perfringens strain SM101 was performed by using gel-based protein separation and liquid chromatography coupled with matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) mass spectrometry. A total of 494 proteins were identified, and 117 of them were predicted to be integral membrane or membrane-associated proteins. Among these membrane proteins, 16 and 26 were detected only in dormant and germinated spores, respectively. One protein that was detected only in germinated spore membranes was the enzyme cyanophycinase, a protease that cleaves the polymer cyanophycin, which is composed of l-arginine-poly(l-aspartic acid), to β-Asp-Arg. Genes encoding cyanophycinase and cyanophycin synthetase have been observed in many species of Clostridium, but their role has not been defined. To determine the function of cyanophycin in C. perfringens, a mutation was introduced into the cphA gene, encoding cyanophycin synthetase. In comparison to parent strain SM101, the spores of the mutant strain retained wild-type levels of heat resistance, but fewer spores were made, and they were smaller, suggesting that cyanophycin synthesis plays a role in spore assembly. Although cyanophycin could not be extracted from sporulating C. perfringens cells, an Escherichia coli strain expressing the cphA gene made copious amounts of cyanophycin, confirming that cphA encodes a cyanophycin synthetase.ImportanceClostridium perfringens is a common cause of food poisoning, and germination of spores after cooking is thought to play a significant role in the disease. How C. perfringens controls the germination process is still not completely understood. We characterized the proteome of the membranes from dormant and germinated spores and discovered that large-scale changes occur after germination is initiated. One of the proteins that was detected after germination was the enzyme cyanophycinase, which degrades the storage compound cyanophycin, which is found in cyanobacteria and other prokaryotes. A cyanophycin synthetase mutant was constructed and found to make spores with altered morphology but normal heat resistance, suggesting that cyanophycin plays a different role in C. perfringens than it does in cyanobacteria

    Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli

    Get PDF
    The pspE and glpE genes of Escherichia coli encode periplasmic and cytoplasmic single-domain rhodaneses, respectively, that catalyzes sulfur transfer from thiosulfate to thiophilic acceptors. Strains deficient in either or both genes were constructed. Comparison of rhodanese activity in these strains revealed that PspE provides 85% of total rhodanese activity, with GlpE contributing most of the remainder. PspE activity was four times higher during growth on glycerol versus glucose, and was not induced by conditions that induce expression of the psp regulon. The glpE/pspE mutants displayed no apparent growth phenotypes, indicating that neither gene is required for biosynthesis of essential sulfur-containing molecules. PspE was purified by using cation exchange chromatography. Two distinct active peaks were eluted and differed in the degree of stable covalent modification, as assessed by mass spectrometry. The peak eluting earliest contained the equivalent mass of two additional sulfur atoms, whereas the second peak contained mainly one additional sulfur. Kinetic properties of purified PspE were consistent with catalysis occurring via a double-displacement mechanism via an enzyme-sulfur intermediate involving the active site cysteine. Kms for SSO32- and CN- were 2.7 mM and 32 mM, respectively, and kcat was 64s-1. The enzyme also catalyzed transfer of sulfur from thiosulfate to dithiothreitol, ultimately releasing sulfide

    DNA combing versus DNA spreading and the separation of sister chromatids

    Get PDF
    DNA combing and DNA spreading are two central approaches for studying DNA replication fork dynamics genome-wide at single-molecule resolution by distributing labeled genomic DNA on coverslips or slides for immunodetection. Perturbations in DNA replication fork dynamics can differentially affect either leading or lagging strand synthesis, for example, in instances where replication is blocked by a lesion or obstacle on only one of the two strands. Thus, we sought to investigate whether the DNA combing and/or spreading approaches are suitable for resolving adjacent sister chromatids during DNA replication, thereby enabling the detection of DNA replication dynamics within individual nascent strands. To this end, we developed a thymidine labeling scheme that discriminates between these two possibilities. Our data suggests that DNA combing resolves sister chromatids, allowing the detection of strand-specific alterations, whereas DNA spreading typically does not. These findings have important implications when interpreting DNA replication dynamics from data obtained by these two commonly used techniques

    The Emergence of Group Dynamics from Contextualised Social Processes: A Complexity-Oriented Grounded-Theory Approach

    Get PDF
    A formal group, within a University, is typically created to accomplish work goals through on-going coordination, combination, and integration of member resources. Group behaviour emerges from the confluence of individual and social forces and behaviours enacted to pursue desired goals. Interactions between group members in context create patterns of group processes and behaviours, and how these patterns change over time creates group dynamics. However, group dynamics do not simply reflect intra-group processes; they also reflect influences that arise from larger contexts within which the group is embedded. Group behaviour can, therefore, be argued to reflect emergent self-organisation, sensitivity to time and initial conditions, and causal ambiguity, properties associated with complex, dynamic and adaptive systems. Much of the research into group dynamics and behaviour (especially experimental social psychology research employing a positivist reductionist theoretical perspective) has tended not to look at groups through such a complexity lens. The research reported in this thesis was intended to push into this frontier. The fundamental question addressed in this thesis is: 'What occurs during group interactions associated with the emergence and maintenance of different types of group dynamics and how do those dynamics tend to unfold over time?' I argue in this thesis that a deep and contextual understanding of the complexity of group dynamics can be achieved using an interpretivist/constructivist perspective coupled with a grounded theory approach employing methodologies that permit the deeper exploration of the meaning of individual as well as collective group behaviours. To achieve the depth of learning needed in this research, I focused on a single long-standing group, a committee that existed within a larger university. I gathered qualitative data using three distinct data gathering strategies: (1) participant observation of the group at its regular monthly meetings over a 12- month period; (2) semi-structured interviews with current and former individual group members; and (3) the review of historical documents (e.g., minutes of meetings, discussion papers) relevant to the group's initial genesis and evolution over the time period prior to this research as well as my own field notes amassed over the duration of the study. I employed MAXQDA 11 Plus to support my analyses of the qualitative data amassed using these three strategies and to aid the development of grounded theory that accounted for the group's contextual dynamics. The results of this study revealed that when the focal group was addressing routine group tasks, systematic and consistent patterns of behaviour were observed. However, when the group was exposed to or perceived an internal or external shock, some interesting and unexpected emergent patterns of behaviour were observed. These behaviours could be traced to the desire for a select few members to maintain the historically based group identity, function, and direction. This maintenance process was accomplished through the application of varying types of power to offset possible bifurcation. For example, one class of such behaviours focused on 'leadership hijacking', where control over the group's consideration of an issue was taken over by a person who was not the discussion leader but for whom that issue was 'hot' and perceived to be strongly threatening. Of the number of external shocks observed, the interplay between the university's and other larger contextual agendas and the group's agenda was visible and often vigorous. This type of shock caused confrontation and escalation behaviours to emerge with the goal, once again, to maintain the historically based group identity and agenda. The addition of data gathered from semi-structured interviews with current and former group members and the review of historical documents relevant to the group provided further evidence relevant to how members strived to maintain the historically based group agenda through the application of their unique brand of group dynamics. In some cases, depending upon the issue at hand, the maintenance of this historically based group agenda centred upon one group member and, in other cases, involved the creation of shorter- and longer-term coalitions. Thus, an understanding of the dynamics of interaction within this group was achieved through close examination of the various contexts within which the group was embedded as well as the contexts of the individual group members. The results support the need to employ a complex adaptive systems perspective when trying to unpack group dynamics as they play out in real time. This research also reinforces the value of adopting an interpretivist perspective to enhance the depth of this learning

    The High Time Resolution Universe Survey VI: An Artificial Neural Network and Timing of 75 Pulsars

    Get PDF
    We present 75 pulsars discovered in the mid-latitude portion of the High Time Resolution Universe survey, 54 of which have full timing solutions. All the pulsars have spin periods greater than 100 ms, and none of those with timing solutions are in binaries. Two display particularly interesting behaviour; PSR J1054-5944 is found to be an intermittent pulsar, and PSR J1809-0119 has glitched twice since its discovery. In the second half of the paper we discuss the development and application of an artificial neural network in the data-processing pipeline for the survey. We discuss the tests that were used to generate scores and find that our neural network was able to reject over 99% of the candidates produced in the data processing, and able to blindly detect 85% of pulsars. We suggest that improvements to the accuracy should be possible if further care is taken when training an artificial neural network; for example ensuring that a representative sample of the pulsar population is used during the training process, or the use of different artificial neural networks for the detection of different types of pulsars.Comment: 15 pages, 8 figure

    Association Between Residential Greenness and Cardiovascular Disease Risk

    Get PDF
    Background Exposure to green vegetation has been linked to positive health, but the pathophysiological processes affected by exposure to vegetation remain unclear. To study the relationship between greenness and cardiovascular disease, we examined the association between residential greenness and biomarkers of cardiovascular injury and disease risk in susceptible individuals. Methods and Results In this cross-sectional study of 408 individuals recruited from a preventive cardiology clinic, we measured biomarkers of cardiovascular injury and risk in participant blood and urine. We estimated greenness from satellite-derived normalized difference vegetation index ( NDVI ) in zones with radii of 250 m and 1 km surrounding the participants' residences. We used generalized estimating equations to examine associations between greenness and cardiovascular disease biomarkers. We adjusted for residential clustering, demographic, clinical, and environmental variables. In fully adjusted models, contemporaneous NDVI within 250 m of participant residence was inversely associated with urinary levels of epinephrine (-6.9%; 95% confidence interval, -11.5, -2.0/0.1 NDVI ) and F2-isoprostane (-9.0%; 95% confidence interval, -15.1, -2.5/0.1 NDVI ). We found stronger associations between NDVI and urinary epinephrine in women, those not on β-blockers, and those who had not previously experienced a myocardial infarction. Of the 15 subtypes of circulating angiogenic cells examined, 11 were inversely associated (8.0-15.6% decrease/0.1 NDVI ), whereas 2 were positively associated (37.6-45.8% increase/0.1 NDVI ) with contemporaneous NDVI . Conclusions Independent of age, sex, race, smoking status, neighborhood deprivation, statin use, and roadway exposure, residential greenness is associated with lower levels of sympathetic activation, reduced oxidative stress, and higher angiogenic capacity

    Radio Detection of the Fermi LAT Blind Search Millisecond Pulsar J1311-3430

    Get PDF
    We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of ~4.5-hrs of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nancay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311-3430, is not radio quiet and provides additional evidence that the radio beaming fraction of millisecond pulsars is very large. The radio detection yields a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulsar as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.Comment: 6 pages, 4 figures. ApJ Letters, in pres
    corecore