509 research outputs found

    You Don't See What I See:Individual Differences in the Perception of Meaning from Visual Stimuli

    Get PDF
    Everyone has their own unique version of the visual world and there has been growing interest in understanding the way that personality shapes one's perception. Here, we investigated meaningful visual experiences in relation to the personality dimension of schizotypy. In a novel approach to this issue, a non-clinical sample of subjects (total n = 197) were presented with calibrated images of scenes, cartoons and faces of varying visibility embedded in noise; the spatial properties of the images were constructed to mimic the natural statistics of the environment. In two experiments, subjects were required to indicate what they saw in a large number of unique images, both with and without actual meaningful structure. The first experiment employed an open-ended response paradigm and used a variety of different images in noise; the second experiment only presented a series of faces embedded in noise, and required a forced-choice response from the subjects. The results in all conditions indicated that a high positive schizotypy score was associated with an increased tendency to perceive complex meaning in images comprised purely of random visual noise. Individuals high in positive schizotypy seemed to be employing a looser criterion (response bias) to determine what constituted a 'meaningful' image, while also being significantly less sensitive at the task than those low in positive schizotypy. Our results suggest that differences in perceptual performance for individuals high in positive schizotypy are not related to increased suggestibility or susceptibility to instruction, as had previously been suggested. Instead, the observed reductions in sensitivity along with increased response bias toward seeing something that is not there, indirectly implicated subtle neurophysiological differences associated with the personality dimension of schizotypy, that are theoretically pertinent to the continuum of schizophrenia and hallucination-proneness

    A comparison of Pfam and MEROPS: Two databases, one comprehensive, and one specialised.

    Get PDF
    BACKGROUND: We wished to compare two databases based on sequence similarity: one that aims to be comprehensive in its coverage of known sequences, and one that specialises in a relatively small subset of known sequences. One of the motivations behind this study was quality control. Pfam is a comprehensive collection of alignments and hidden Markov models representing families of proteins and domains. MEROPS is a catalogue and classification of enzymes with proteolytic activity (peptidases or proteases). These secondary databases are used by researchers worldwide, yet their contents are not peer reviewed. Therefore, we hoped that a systematic comparison of the contents of Pfam and MEROPS would highlight missing members and false-positives leading to improvements in quality of both databases. An additional reason for carrying out this study was to explore the extent of consensus in the definition of a protein family. RESULTS: About half (89 out of 174) of the peptidase families in MEROPS overlapped single Pfam families. A further 32 MEROPS families overlapped multiple Pfam families. Where possible, new Pfam families were built to represent most of the MEROPS families that did not overlap Pfam. When comparing the numbers of sequences found in the overlap between a MEROPS family and its corresponding Pfam family, in most cases the overlap was substantial (52 pairs of MEROPS and Pfam families had an intersection size of greater than 75% of the union) but there were some differences in the sets of sequences included in the MEROPS families versus the overlapping Pfam families. CONCLUSIONS: A number of the discrepancies between MEROPS families and their corresponding Pfam families arose from differences in the aims and philosophies of the two databases. Examination of some of the discrepancies highlighted additional members of families, which have subsequently been added in both Pfam and MEROPS. This has led to improvements in the quality of both databases. Overall there was a great deal of consensus between the databases in definitions of a protein family

    B cell–intrinsic TLR signals amplify but are not required for humoral immunity

    Get PDF
    Although innate signals driven by Toll-like receptors (TLRs) play a crucial role in T-dependent immune responses and serological memory, the precise cellular and time-dependent requirements for such signals remain poorly defined. To directly address the role for B cell–intrinsic TLR signals in these events, we compared the TLR response profile of germinal center (GC) versus naive mature B cell subsets. TLR responsiveness was markedly up-regulated during the GC reaction, and this change correlated with altered expression of the key adaptors MyD88, Mal, and IRAK-M. To assess the role for B cell–intrinsic signals in vivo, we transferred MyD88 wild-type or knockout B cells into B cell–deficient μMT mice and immunized recipient animals with 4-hydroxy-3-nitrophenylacetyl (NP) chicken gamma globulin. All recipients exhibited similar increases in NP-specific antibody titers during primary, secondary, and long-term memory responses. The addition of lipopolysaccharide to the immunogen enhanced B cell-intrinsic, MyD88-dependent NP-specific immunoglobulin (Ig)M production, whereas NP-specific IgG increased independently of TLR signaling in B cells. Our data demonstrate that B cell–intrinsic TLR responses are up-regulated during the GC reaction, and that this change significantly promotes antigen-specific IgM production in association with TLR ligands. However, B cell–intrinsic TLR signals are not required for antibody production or maintenance

    Gravitational instabilities in a protosolar-like disc - I. Dynamics and chemistry

    Get PDF
    MGE gratefully acknowledges a studentship from the European Research Council (ERC; project PALs 320620). JDI gratefully acknowledges funding from the European Union FP7-2011 under grant agreement no. 284405. ACB's contribution was supported, in part, by The University of British Columbia and the Canada Research Chairs program. PC and TWH acknowledge the financial support of the European Research Council (ERC; project PALs 320620).To date, most simulations of the chemistry in protoplanetary discs have used 1 + 1D or 2D axisymmetric α-disc models to determine chemical compositions within young systems. This assumption is inappropriate for non-axisymmetric, gravitationally unstable discs, which may be a significant stage in early protoplanetary disc evolution. Using 3D radiative hydrodynamics, we have modelled the physical and chemical evolution of a 0.17 M⊙ self-gravitating disc over a period of 2000 yr. The 0.8 M⊙ central protostar is likely to evolve into a solar-like star, and hence this Class 0 or early Class I young stellar object may be analogous to our early Solar system. Shocks driven by gravitational instabilities enhance the desorption rates, which dominate the changes in gas-phase fractional abundances for most species. We find that at the end of the simulation, a number of species distinctly trace the spiral structure of our relatively low-mass disc, particularly CN. We compare our simulation to that of a more massive disc, and conclude that mass differences between gravitationally unstable discs may not have a strong impact on the chemical composition. We find that over the duration of our simulation, successive shock heating has a permanent effect on the abundances of HNO, CN and NH3, which may have significant implications for both simulations and observations. We also find that HCO+ may be a useful tracer of disc mass. We conclude that gravitational instabilities induced in lower mass discs can significantly, and permanently, affect the chemical evolution, and that observations with high-resolution instruments such as Atacama Large Millimeter/submillimeter Array (ALMA) offer a promising means of characterizing gravitational instabilities in protosolar discs.Publisher PDFPeer reviewe

    Phage display selected magnetite interacting Adhirons for shape controlled nanoparticle synthesis

    Get PDF
    Adhirons are robust, well expressing, peptide display scaffold proteins, developed as an effective alternative to traditional antibody binding proteins for highly specific molecular recognition applications. This paper reports for the first time the use of these versatile proteins for material binding, and as tools for controlling material synthesis on the nanoscale. A phage library of Adhirons, each displaying two variable binding loops, was screened to identify specific proteins able to interact with [100] faces of cubic magnetite nanoparticles. The selected variable regions display a strong preference for basic residues such as lysine. Molecular dynamics simulations of amino acid adsorption onto a [100] magnetite surface provides a rationale for these interactions, with the lowest adsorption energy observed with lysine. These proteins direct the shape of the forming nanoparticles towards a cubic morphology in room temperature magnetite precipitation reactions, in stark contrast to the high temperature, harsh reaction conditions currently used to produce cubic nanoparticles. These effects demonstrate the utility of the selected Adhirons as novel magnetite mineralization control agents using ambient aqueous conditions. The approach we outline with artificial protein scaffolds has the potential to develop into a toolkit of novel additives for wider nanomaterial fabrication

    Bone density of the femoral neck following Birmingham hip resurfacing: A 2-year prospective study in 27 hips

    Get PDF
    Background Resurfacing is a popular alternative to a standard hip replacement in young arthritic patients. Despite bone preservation around the femoral component, there is little information regarding the bone quality

    Shocked Molecular Hydrogen in the 3C 326 Radio Galaxy System

    Full text link
    The Spitzer spectrum of the giant FR II radio galaxy 3C 326 is dominated by very strong molecular hydrogen emission lines on a faint IR continuum. The H2 emission originates in the northern component of a double-galaxy system associated with 3C 326. The integrated luminosity in H2 pure-rotational lines is 8.0E41 erg/s, which corresponds to 17% of the 8-70 micron luminosity of the galaxy. A wide range of temperatures (125-1000 K) is measured from the H2 0-0 S(0)-S(7) transitions, leading to a warm H2 mass of 1.1E9 Msun. Low-excitation ionic forbidden emission lines are consistent with an optical LINER classification for the active nucleus, which is not luminous enough to power the observed H2 emission. The H2 could be shock-heated by the radio jets, but there is no direct indication of this. More likely, the H2 is shock-heated in a tidal accretion flow induced by interaction with the southern companion galaxy. The latter scenario is supported by an irregular morphology, tidal bridge, and possible tidal tail imaged with IRAC at 3-9 micron. Unlike ULIRGs, which in some cases exhibit H2 line luminosities of comparable strength, 3C 326 shows little star-formation activity (~0.1 Msun/yr). This may represent an important stage in galaxy evolution. Starburst activity and efficient accretion onto the central supermassive black hole may be delayed until the shock-heated H2 can kinematically settle and coolComment: 27 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Hydrolases in GtoPdb v.2023.1

    Get PDF
    Listed in this section are hydrolases not accumulated in other parts of the Concise Guide, such as monoacylglycerol lipase and acetylcholinesterase. Pancreatic lipase is the predominant mechanism of fat digestion in the alimentary system; its inhibition is associated with decreased fat absorption. CES1 is present at lower levels in the gut than CES2 (P23141), but predominates in the liver, where it is responsible for the hydrolysis of many aliphatic, aromatic and steroid esters. Hormone-sensitive lipase is also a relatively non-selective esterase associated with steroid ester hydrolysis and triglyceride metabolism, particularly in adipose tissue. Endothelial lipase is secreted from endothelial cells and regulates circulating cholesterol in high density lipoproteins

    Characterization of a late transitional B cell population highly sensitive to BAFF-mediated homeostatic proliferation

    Get PDF
    We have characterized a distinct, late transitional B cell subset, CD21int transitional 2 (T2) B cells. In contrast to early transitional B cells, CD21int T2 B cells exhibit augmented responses to a range of potential microenvironmental stimuli. Adoptive transfer studies demonstrate that this subset is an immediate precursor of both follicular mature and marginal zone (MZ) B cells. In vivo, a large percentage of CD21int T2 B cells has entered the cell cycle, and the cycling subpopulation exhibits further augmentation in mitogenic responses and B cell-activating factor of the TNF family (BAFF) receptor expression. Consistent with these features, CD21int T2 cells exhibit preferential responses to BAFF-facilitated homeostatic signals in vivo. In addition, we demonstrate that M167 B cell receptor (BCR) idiotypic-specific B cells are first selected within the cycling CD21int T2 population, ultimately leading to preferential enrichment of these cells within the MZ B cell compartment. These data, in association with the coordinate role for BAFF and microenvironmental cues in determining the mature BCR repertoire, imply that this subset functions as a unique selection point in peripheral B cell development
    • …
    corecore