195 research outputs found
Homoleptic Cyclic Trinuclear d10 Complexes: From Self-Association via Metallophilic and Excimeric Bonding to the Breakage Thereof via Oxidative Addition, Dative Bonding, Quadrupolar and Heterometal Bonding Interactions
Trinuclear coinage metal metallacycles are obtained when two-coordinate metals are
bonded to C, N or N, N anionic ligands of the proper symmetry to form cycles where metals alternate with bridging ligands. Cyclotrimers often exhibit semiplanar structures
and mostly columnar or finite stacking in the solid state by means of metallophilic
interactions. They show some peculiar properties with an impact on many
different fields such as supramolecular architectures, luminescence, molecular recognition,
host-guest chemistry, and acid-base chemistry. The comprehensive evaluation
of the data shows that, depending on the nature of the central metal and bridging
ligand, there is a fine balance of the energy involved in the inter-trimer bond cleavages
and the energy gained from the formation of new intermolecular electrostatic interactions,
proceeding occasionally to the chemical extreme of redox processes. In this
review, a number of important developments are highlighted and systematically analyzed
along with structural and computational data and chemical properties to rationalize
and build a unifying leitmotif for this chemistry; the focus is made on the
authors’ contributions in these areas
Anion-Dependent Construction of Two Hexanuclear 3D-4F Complexes with a Flexible Schiff Base Ligand
Two hexanuclear 3d-4f Ni-Eu and Cu-Eu complexes [Eu4Ni2L2(OAc)(12)(EtOH)(2)] (1) and [Eu4Cu2L2(OAc)(12)]center dot 2H(2)O (2) are reported which are formed from the salen type Schiff-base ligand H2L (H2L = N,N'-bis(3-methoxysalicylidene)butane-1,4-diamine). In both complexes, four Eu3+ cations are bridged by eight OAc- groups and the chain is terminated at each end by two ML (M = Ni and Cu) units. The structures of 1 and 2 were determined by single crystal X-ray crystallographic studies and the luminescence properties of the free ligand and metal complexes in solution were measured.HHMI Undergraduate Science Education Award 52005907National Science Foundation CHE-0629136, CHE-0741973, CHE-0847763Welch Foundation F-1631, F-816Hong Kong Baptist University FRG/06-07/II-16Hong Kong Research Grants Council HKBU 202407Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Open Foundation of Jiangsu Province Key Laboratory of Fine Petrochemical Technology KF1005UT-CNM and UT-AustinChemistr
Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni)
A series of M[Au(CN)2]2(analyte)x coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH2)[Au(CN)2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN)2]2(DMSO)2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)2] in DMSO yielded the isostructural Ni[Au(CN)2]2(DMSO)2 product. Co[Au(CN)2]2(DMSO)2 and M[Au(CN)2]2(DMF)2 (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH2)[Au(CN)2]2 and from DMSO or DMF solution synthesis. Co[Au(CN)2]2(pyridine)4 is generated via vapour absorption by Co(μ-OH2)[Au(CN)2]2; the analogous Ni complex is synthesized by immersion of Ni(μ-OH2)[Au(CN)2]2 in 4% aqueous pyridine. Similar immersion of Co(μ-OH2)[Au(CN)2]2 yielded Co[Au(CN)2]2(pyridine)2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH2)[Au(CN)2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)2]2 was prepared by dehydration of Co(μ-OH2)[Au(CN)2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate
Cupriphication of gold to sensitize d10–d10 metal–metal bonds and near-unity phosphorescence quantum yields
Outer-shell s0/p0 orbital mixing with d10 orbitals and symmetry reductionuponcupriphicationofcyclic trinucleartrigonal-planargold(I) complexes are found to sensitize ground-state Cu(I)–Au(I) covalent bonds and near-unity phosphorescence quantum yields. Heterobimetallic Au4Cu2 {[Au4(μ-C2,N3-EtIm)4Cu2(μ-3,5-(CF3)2Pz)2], (4a)}, Au2Cu {[Au2(μ-C2,N3-BzIm)2Cu(μ-3,5-(CF3)2Pz)], (1) and [Au2(μ-C2, N3-MeIm)2Cu(μ-3,5-(CF3)2Pz)], (3a)}, AuCu2 {[Au(μ-C2,N3-MeIm)Cu2(μ3,5-(CF3)2Pz)2], (3b) and [Au(μ-C2,N3-EtIm)Cu2(μ-3,5-(CF3)2Pz)2], (4b)} and stacked Au3/Cu3 {[Au(μ-C2,N3-BzIm)]3[Cu(μ-3,5-(CF3)2Pz)]3, (2)} formuponreactingAu3 {[Au(μ-C2,N3-(N-R)Im)]3 ((N-R)Im = imidazolate; R =benzyl/methyl/ethyl =BzIm/MeIm/EtIm)} with Cu3 {[Cu(μ-3,5(CF3)2Pz)]3 (3,5-(CF3)2Pz = 3,5-bis(trifluoromethyl)pyrazolate)}. The crystal structures of 1 and 3a reveal stair-step infinite chains whereby adjacent dimer-of-trimer units are noncovalently packed via twoAu(I)⋯Cu(I)metallophilicinteractions,whereas 4a exhibitsa hexanuclear cluster structure wherein two monomer-of-trimer units are linked by a genuine d10–d10 polar-covalent bond with ligandunassisted Cu(I)–Au(I) distances of 2.8750(8) Å each—the shortest such an intermolecular distance ever reported between any two d10 centers so as to deem it a “metal–metal bond” vis-à-vis “metallophilic interaction.” Density-functional calculations estimate 35– 43kcal/molbindingenergy,akintotypicalM–Msingle-bondenergies. Congruently, FTIR spectra of4a showmultiple far-IR bands within 65– 200 cm−1, assignable to vCu-Au as validated by both the Harvey–Gray method of crystallographic-distance-to-force-constant correlation and dispersive density functional theory computations. Notably, the heterobimetallic complexes herein exhibit photophysical properties that are favorable to those for their homometallic congeners, due to threefold-to-twofold symmetry reduction, resulting in cuprophilicsensitizationinextinctioncoefficientandsolid-state photoluminescence quantum yields approaching unity (ΦPL = 0.90–0.97 vs. 0–0.83 for Au3 and Cu3 precursors), which bodes well for potential future utilization in inorganic and/or organic LED applications
Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries
Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
- …