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Anion-dependent construction of two hexanuclear 3d–4f complexes with a
flexible Schiff base ligand†‡
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Two hexanuclear 3d–4f Ni–Eu and Cu–Eu complexes [Eu4Ni2L2(OAc)12(EtOH)2] (1) and
[Eu4Cu2L2(OAc)12]·2H2O (2) are reported which are formed from the salen type Schiff-base ligand H2L
(H2L = N,N′-bis(3-methoxysalicylidene)butane-1,4-diamine). In both complexes, four Eu3+ cations are
bridged by eight OAc− groups and the chain is terminated at each end by two ML (M = Ni and Cu) units.
The structures of 1 and 2 were determined by single crystal X-ray crystallographic studies and the
luminescence properties of the free ligand and metal complexes in solution were measured.

Introduction

The design and construction of polynuclear metal complexes
have received extensive attention due to the fascinating physical
and chemical properties associated with this class of materials.1

Heteropolynuclear complexes comprised of d-block transition
metals and lanthanide ions are currently of interest for potential
applications in materials which harness unique optical and mag-
netic properties.2 However, it is difficult to control the structures
of polynuclear assemblies based on lanthanide ions because they
often display high and variable coordination numbers and have
no strong stereochemical preferences. Complex structures are
often influenced by a variety of factors such as ligand architec-
ture, the nature of counter ions, and ionic radii.3 The majority of
d–f polynuclear compounds reported so far have employed car-
boxylates, amino acids, betaines, and 2-pyridonates as ligands.4

Compartmental Schiff bases with two dissimilar metal-binding
sites, one being specific for the d metal ion and another for the f
metal ion, are classical ligands which have been used for the
synthesis of 3d–4f heteronuclear complexes.5a–d Our recent
studies have focused on the synthesis of polynuclear 4f homo-
metallic and 3d–4f heterometallic complexes with Schiff-base

ligands.5e–i We have employed essentially two kinds of “salen”
style Schiff-base ligands in which one is a conjugated ligand
with a phenylene backbone H2L

a,b (Scheme 1a) and the other is
exemplified by the flexible Schiff-base ligands H2L

c and H2L
(Scheme 1b). In past studies, we discovered that “multi-decker”
4f and 3d–4f complexes with lanthanide ions sandwiched
between alternating layers of the Schiff-base ligand La or ZnLb

units could be isolated.5e–g A key feature in these kinds of struc-
tures is the presence of intramolecular π–π stacking interactions
between planar conjugated Schiff base ligands, which can
further add to the stability of the complex. When the more
flexible Schiff base ligands H2L

c and H2L were used in the syn-
thesis, a variety of 1-D coordination polymers were formed by
bridging H2L

c units or by OAc− (acetate) anions.5h,i The flexible
Schiff-base ligands show a “stretched” configuration to bridge
lanthanide ions, forming coordination polymeric structures in
which π–π stacking interactions do not occur. We are interested
in the influence of anions on the structures of these lanthanide
complexes. For example, a 1-D coordination polymer {YbNiLCl-
(OAc)2(H2O)}n was obtained from the reaction of N,N′-bis-
(3-methoxysalicylidene)butane-1,4-diamine (H2L) with Ni(OAc)2·
4H2O and YbCl3·6H2O when there were two kinds of anions
present in the reaction mixture, OAc− and Cl−. In contrast, a
heterobinuclear complex [YbNiLCl3(H2O)3] was formed from

Scheme 1 Salen-type Schiff base ligands.
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the reaction of H2L with NiCl2·6H2O and YbCl3·6H2O when the
only anion that was present was Cl− (Scheme 2).5i As part of our
continuing studies focused on the construction of high nuclearity
frameworks, we describe here two 3d–4f hexanuclear complexes
[Eu4Ni2L2(OAc)12(EtOH)2] (1) and [Eu4Cu2L2(OAc)12]·2H2O
(2) which are obtained from reactions of H2L with
M(OAc)2·4H2O (M = Ni(II) and Cu(II)) and Eu(OAc)3·4H2O
(Scheme 2). In these examples only OAc− was present in the
reaction mixture. Of the known heterometallic 3d–4f Schiff base
complexes, most are binuclear and there exist very few reports of
high nuclearity 3d–4f salen based systems.2,5b,6 Interestingly,
1 and 2 have a similar hexanuclear structures in the solid state
with four Eu3+ cations bridged by eight OAc− groups and
clamped between two ML (M = Ni and Cu) units. Intramolecular
π–π stacking interactions between phenylene units of H2L are
absent in the structures of 1 and 2.

Experimental section

General considerations

All reactions were performed under dry oxygen-free dinitrogen
atmospheres using standard Schlenk techniques. Metal salts and
other solvents were purchased from Aldrich and used directly
without further purification. The Schiff-base ligand H2L was pre-
pared according to well-established procedures.7 Physical
measurements: NMR: VARIAN UNITY-plus. 600 spectrometer
(1H, 600 MHz) at 298 K; Mass spec: HRESI, Finnigan MAT
TSQ 700; IR: Nicolet IR 200 FTIR spectrometer. Melting points
were obtained in sealed glass capillaries under dinitrogen and are
uncorrected. Absorption spectra were obtained on a BECKMAN
DU 640 spectrophotometer, excitation and visible emission
spectra on a QuantaMaster PTI fluorimeter.

Synthesis of complexes 1 and 2

[Eu4Ni2L2(OAc)12(EtOH)2] (1). A mixture of the Schiff-base
ligand H2L (0.178 g, 0.5 mmol) and Ni(OAc)2·4H2O (0.124 g,
0.5 mmol) in CH3CN/EtOH (1 : 3, 20 ml) was stirred and heated
under reflux for 10 minutes. The reaction mixture was allowed to
cool briefly, Eu(OAc)3·4H2O (0.165 g, 0.5 mmol) was added
and the mixture was again heated under reflux (15 minutes).

It was allowed to cool and was then filtered. Diethyl ether was
allowed to diffuse slowly into the filtrate at room temperature
and blue crystals were obtained after two weeks. The crystals
were filtered off and washed with EtOH (5 ml). Yield (based on
Eu(OAc)3·4H2O): 0.083 g (30%). m.p. > 290 °C (dec.). ESI-MS
(MeOH) m/z: 1550 ([NiEu3L(OAc)8(EtOH)4]

+). 1H NMR
(600 MHz, CD3OD): δ (ppm) 91.990 (1H, EtOH), 40.157 (2H),
16.249 (6H), 10.044 (4H), 3.599 (2H), 3.480 (3H), 1.166 (10H),
−1.511 (18H). IR (CH3OH, cm

−1): 3420 (m), 2951 (m), 1621 (s),
1553 (m), 1540 (m), 1451 (s), 1420 (s), 1340 (s), 1222 (m),
1075 (m), 856 (m), 730 (s).

[Eu4Cu2L2(OAc)12]·2H2O (2). The procedure was the same as
that for 1 using Cu(OAc)2·H2O (0.100 g, 0.5 mmol). Green blue
single crystals of 2 were formed after two weeks. Yield (base on
Eu(OAc)3·4H2O): 0.135 g (48%). m.p. > 275 °C (dec.). ESI-MS
(MeOH) m/z: 694 ([CuEuL(OAc)2]

+). 1H NMR (600 MHz,
CD3OD): δ (ppm) 40.164 (2H), 18.487 (6H), 10.189 (2H),
8.809 (2H), 0.088 (6H), −2.340 (22H). IR (CH3OH, cm−1):
3379 (m), 1630 (s), 1557 (s), 1460 (s), 1418 (m), 1223 (s),
1156 (m), 1078 (m), 1001 (m), 855 (m), 732 (s).

X-ray crystallography

Data were collected on a Rigaku MiniFlex II CCD diffractometer
with graphite monochromated Mo-Kα radiation (λ = 0.71073 Å)
at 223 K. The data set was corrected for absorption based on
multiple scans and reduced using standard methods. The struc-
tures were solved by direct methods and refined anisotropically
using full-matrix least-squares methods with the SHELX 97
program package.8 Coordinates of the non-hydrogen atoms were
refined anisotropically, while hydrogen atoms were included in
the calculation isotropically but not refined. Neutral atom scatter-
ing factors were taken from Cromer and Waber.9

Results and discussion

Reactions of the Schiff-base ligand H2L with M(OAc)2·nH2O
(M = Ni and Cu) and Eu(OAc)3·4H2O in refluxing MeCN/EtOH
(1 : 3) produced dark blue solutions from which the hexanuclear
Ni–Eu and Cu–Eu complexes 1 and 2 were isolated as blue crys-
talline solids in 30 and 48% yields, respectively. The solid state
structures of 1 and 2 were determined by single crystal X-ray
crystallographic studies. Crystallographic data for both com-
plexes are presented in Table 1 and selected bond lengths and
angles are given in Tables 2 and 3.

A view of the crystal structure of 1 is shown in Fig. 1, and
reveals a hexanuclear centrosymmetric core containing two
equivalent NiEu2L moieties linked by two tridentate OAc−

anions. In the NiEu2L moiety, Ni(1) is located in the inner N2O2

cavity of the Schiff base ligand and has a bi-pyramidal geometry
with two oxygen atoms from two bridged OAc− anions occupy-
ing the axial positions. Eu(1) is bound to the O2O2 cavity of the
Schiff-base ligand and surrounded by nine oxygen atoms from
one L group and five OAc− anions. Ni(1) and Eu(1) are bridged
by two bidentate OAc− anions in addition to the phenolic
oxygen atoms of the Schiff base ligand. The Ni(1)–Eu(1) sepa-
ration is 3.346 Å. Eu(2) and Eu(1) are linked by three OAc−

anions with a separation of 4.113 Å. Eu(2) is 9 coordinate being

Scheme 2 Synthesis of 3d–4f complexes 1 and 2.
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bound by five OAc− anions and one EtOH molecule. The dis-
tance between the two central Eu(2) ions is 4.231 Å.

A view of the crystal structure of 2 is shown in Fig. 2.
Complex 2 has a similar hexanuclear structure to 1, thus there is
a centrosymmetric core with two equivalent CuEu2L moieties

that are bridged by two tridentate OAc− anions. The distance
between the two equal Eu(2) ions is 4.144 Å. In the CuEu2L
moiety, Cu(1) and Eu(1) are located in the inner N2O2 and O2O2

cavities of the Schiff-base ligand, respectively, with a separation
of 3.467 Å. The Cu2+ ion has a square based pyramidal

Table 2 Selected bond lengths (Å) and angles (°) for 1

Eu(1)–O(3) 2.336(5)
Eu(1)–O(2) 2.337(4)
Eu(1)–O(9) 2.359(5)
Eu(1)–O(8) 2.390(4)
Eu(1)–O(6) 2.397(4)
Eu(1)–O(13) 2.495(4)
Eu(1)–O(11) 2.542(5)
Eu(1)–O(4) 2.643(5)
Eu(1)–O(1) 2.667(5)
Ni(1)–O(3) 2.063(5)
Ni(1)–O(7) 2.080(5)
Ni(1)–N(1) 2.087(6)
Ni(1)–O(2) 2.092(5)
Ni(1)–O(5) 2.099(5)
Ni(1)–N(2) 2.126(6)
O(3)–Eu(1)–O(2) 75.80(16)
O(3)–Eu(1)–O(4) 62.73(15)
O(2)–Eu(1)–O(4) 133.64(15)
O(3)–Eu(1)–O(1) 131.67(16)
O(2)–Eu(1)–O(1) 63.03(16)
O(4)–Eu(1)–O(1) 134.77(17)
O(3)–Ni(1)–N(1) 171.9(2)
O(3)–Ni(1)–O(2) 87.40(17)
N(1)–Ni(1)–O(2) 85.2(2)
O(3)–Ni(1)–N(2) 87.5(2)
O(7)–Ni(1)–N(2) 94.33(19)
N(1)–Ni(1)–N(2) 100.0(2)
O(2)–Ni(1)–N(2) 174.6(2)

Table 3 Selected bond lengths (Å) and angles (°) for 2

Eu(1)–O(6) 2.309(7)
Eu(1)–O(3) 2.372(6)
Eu(1)–O(9) 2.396(7)
Eu(1)–O(11) 2.414(7)
Eu(1)–O(2) 2.441(6)
Eu(1)–O(7) 2.495(8)
Eu(1)–O(8) 2.525(7)
Eu(1)–O(1) 2.663(8)
Eu(1)–O(4) 2.794(7)
Cu(1)–O(2) 1.955(7)
Cu(1)–N(1) 2.003(8)
Cu(1)–O(3) 2.006(7)
Cu(1)–N(2) 2.012(9)
Cu(1)–O(5) 2.156(7)
O(3)–Eu(1)–O(2) 63.9(2)
O(3)–Eu(1)–O(1) 125.3(2)
O(2)–Eu(1)–O(1) 61.7(2)
O(3)–Eu(1)–O(4) 59.2(2)
O(2)–Eu(1)–O(4) 104.7(2)
O(1)–Eu(1)–O(4) 141.1(3)
O(2)–Cu(1)–N(1) 91.1(3)
O(2)–Cu(1)–O(3) 80.0(3)
N(1)–Cu(1)–O(3) 146.4(3)
O(2)–Cu(1)–N(2) 170.5(3)
N(1)–Cu(1)–N(2) 95.9(3)
O(3)–Cu(1)–N(2) 90.6(3)

Fig. 1 Aview of the crystal structure of 1. H atoms have been omitted
for clarity and thermal ellipsoids drawn at the 30% probability level.
Symmetry operator (−x, −y, −z) generates equivalent atoms marked with
“A”.

Fig. 2 Aview of the crystal structure of 2. H atoms have been omitted
for clarity and thermal ellipsoids drawn at the 30% probability level.
Symmetry operator (−x, −y, −z) generates equivalent atoms marked with
“A”.

Table 1 Crystal data and structure refinement for complexes 1 and 2

1 2

Formula C68H92N4O34Ni2Eu4 C64H88N4O36Cu2Eu4
Fw 2234.72 2224.24
Cryst syst. Monoclinic Triclinic
Space group P21/n P1̄
a (Å) 12.803(3) 10.765(2)
b (Å) 16.488(3) 12.646(3)
c (Å) 19.716(4) 19.068(4)
α (°) 90 95.39(2)
β (°) 108.40(3) 104.23(3)
γ (°) 90 112.35(3)
V (Å3) 3949.3(14) 2275.9(10)
Z 2 1
Dcalc (g cm−3) 1.879 1.617
Temp (K) 153(1) 153(1)
F(000) 2216 1090
μ (mm−1) 3.685 3.251
θ rang (°) 1.65–25.00 1.13–25.00
Reflns meads 10 575 19 984
Reflns used 6850 7993
Params 505 516
Ra (I > 2σ(I)) R1 = 0.0367 R1 = 0.0570

wR2 = 0.1101 wR2 = 0.1662
Ra (all data) R1 = 0.0446 R1 = 0.0829

wR2 = 0.1358 wR2 = 0.2038
S 1.221 1.171

a R1 = Σ|Fo| − |Fc|Σ|Fo|. wR2 = [Σw[(Fo
2 − Fc

2)2]/Σ|[w(Fo
2)2]]1/2. w =

1/[σ2(Fo
2) + (0.075P)2], where P = [max(Fo

2,0) + 2Fc
2]/3.

This journal is © The Royal Society of Chemistry 2012 Dalton Trans., 2012, 41, 11449–11453 | 11451
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geometry via the coordination of an oxygen atom of OAc− anion
in the axial position. Eu(1) has a nine-coordinate environment
similar to that found in 1. Eu(2) and Eu(1) are also linked by
three OAc− anions with a separation of 4.087 Å. However,
unlike 1 there is no EtOH molecule coordinated to Eu(2). Eu(2)
is 9 coordinate being bound by six OAc− anions. In 1 and 2, the
average distances for the Ni–N (2.107 Å), Ni–O (phenolic)
(2.078 Å), Cu–N (2.009 Å), Cu–O (phenolic) (1.980 Å), Eu–O
(phenolic) (2.337 Å 1, 2.408 Å 2) and Eu–O(methoxy) (2.655 Å
1, 2.732 Å 2) bonds are comparable to those found in the
literature.5,6

1H NMR spectrum of 1 in CD3OD at room temperature
revealed the presence of 7 broadened peaks ranging from −2 to
+41 ppm, corresponding to the 45 C–H protons from one Schiff
base ligand, six coordinated OAc− groups and one coordinated
EtOH molecule (Fig. S1, ESI‡). A very broad O–H proton peak
assigned to the coordinated EtOH is observed at +92 ppm. The
1H NMR spectrum of 2 in CD3OD at room temperature shows
the presence of 6 broadened peaks ranging from −3 to +41 ppm.
These peaks correspond to the 40 C–H protons from one Schiff
base ligand and six coordinated OAc− groups. The broad and
unresolved nature of the signals caused by the paramagnetic 3d
metal ions and the 4f lanthanide ions precluded further study by
COSY 2-D analysis. The data is consistent with multinuclear
structures for 1 and 2 persisting in solution.

Luminescence studies

There is considerable interest in luminescent lanthanide com-
plexes since lanthanide ions exhibit long-lived lifetimes and
line-like emission bands at characteristic wavelengths. The
photophysical properties of lanthanide ions depend markedly on
the environment surrounding the metal center. For example, sol-
vents containing O–H (i.e. H2O and CH3OH) can efficiently
quench the luminescence of lanthanide ions. However, if the
O–H is replaced by O–D, this process becomes much less
efficient.10 Since complexes 1 and 2 are soluble in methanol the
photophysical properties were studied in both CH3OH and
CD3OD.

The absorption spectra of the free ligand H2L, and complexes
1 and 2 in MeOH are shown in Fig. 3. The free ligand H2L exhi-
bits absorption bands at 219, 240, 259, 291 and 415 nm, which
are strongly perturbed upon co-ordination to Ln3+ in complexes
1 and 2. Complexes 1 and 2 exhibit similar solution absorption
spectra. The excitation and emission spectra of the free ligand
H2L and complex 1 are shown in Fig. 4. Excitation of the
absorption band at 275 nm of the free ligand H2L produces two
broad emission bands at λmax = 319 and 496 nm. The excitation
spectrum of the free ligand H2L, monitoring the intensity of the
emission at 496 nm, displays two peaks centered at 275 and
350 nm. For complexes 1 and 2, the typical narrow emission
bands of the Eu3+ ion (5D0 →

7Fj transitions, j = 0, 1, 2, 3 and 4)
can be detected upon excitation of the ligand-centered absorption
bands (λex = 308 and 281 nm for 1 and 2, respectively) in
CD3OD at room temperature (Fig. 4). However, the emission
intensities are reduced sharply in CH3OH, indicating that the
photophysical properties are significantly affected by solvent
O–H bonds in the solvent molecules. The overall quantum yield

(Φem) of 1 in CD3OD was determined as 0.0011 relative to
[Ru(bipy)3]Cl2 in water (bipy = 2,2′-bipyridine; Φem = 0.028),11

which is less than that of the polymeric complex [Eu2(H2L)-
(OAc)6]n that does not bear 3d metal ions (Φem = 0.015).5i The
luminescence of 2 in CD3OD is also weak with a quantum yield
less than 10−4. For both 1 and 2, the weak luminescence of Eu3+

ions maybe due to lanthanide to transition metal (4f → 3d)
energy transfer which can efficiently quench lanthanide ions.12

Studies of other d-block metals (i.e. d10 monovalent metal
ions13) in the synthesis of d–f complexes, which may result in
the transition metal to lanthanide (d → 4f) energy transfer, are in
progress.

Conclusions

Two hexanuclear Ni–Eu and Cu–Eu complexes 1 and 2 with the
flexible Schiff-base ligand H2L have been prepared and structu-
rally characterized. In complexes 1 and 2, four Eu3+ anions
bridged by eight OAc− groups are clamped between two ML
(M = Ni and Cu) units. The overall structures of 1 and 2 com-
prise two crystallographically equivalent MEu2L units related by

Fig. 4 Excitation and emission spectra of the free ligand H2L (⋯; ---)
in CH3OH and 1 (—) in CD3OD at room temperature.

Fig. 3 Absorption spectra of the free H2L and complexes 1 and 2 in
CH3OH.

11452 | Dalton Trans., 2012, 41, 11449–11453 This journal is © The Royal Society of Chemistry 2012
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a center of symmetry and linked by two OAc− groups. Both 1
and 2 show visible emissions of Eu3+ ions in methanol.
However, the overall quantum yields of 1 and 2 are much less
than that of [Eu2(H2L)(OAc)6]n, indicating that the energy trans-
fer from the Eu3+ ions to the transition metals (Ni2+ and Cu2+)
may happen in 1 and 2.
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