37 research outputs found

    Comparison of heat-shock responses between the hydrothermal vent shrimp Rimicaris exoculata and the related coastal shrimp Palaemonetes varians

    No full text
    The deep-sea vent shrimp Rimicaris exoculata is believed to occur at the hot end of the hydrothermal biotope in order to provide essential elements to its epibiosis. Because it is found close to hot venting water, R. exoculata lives in a highly fluctuating environment where temperature (2–40 °C in the swarms) can exceed its critical maximal temperature (33–38.5 ± 2 °C). In order to understand how this vent shrimp copes with hyperthermia, we compared its molecular heat stress response following an acute but non-lethal heat-shock (1 h at 30 °C) with that of its monophyletic shallow-water relative, the shrimp Palaemonetes varians, known to frequently undergo prolonged exposure at temperatures up to 30 °C in its natural environment during summer. We isolated four isoforms of heat-shock proteins 70 (HSP70) in R. exoculata (2 constitutive and 2 inducible isoforms) and two isoforms in P. varians (1 constitutive and 1 inducible isoform) and quantitatively compared their magnitude of induction at mRNA level, using real-time PCR, in the case of experimentally heat-stressed shrimps, with respect to control (unstressed) animals. Here, we report the first quantification of the expression of multiple hsp70 genes following heat stress in a deep-sea vent species living at 2300 m depth. Our results show a strong increase of hsp70 inducible genes in the vent shrimp (not, vert, similar 400-fold) compared to the coastal shrimp (not, vert, similar 15-fold). We therefore propose that, the highly inducible molecular response observed in R. exoculata may contribute to the ability of this species to tolerate thermal extremes

    Diversification, evolution and sub-functionalization of 70kDa heat-shock proteins in two sister species of Antarctic krill: differences in thermal habitats, responses and implications under climate change

    Get PDF
    A comparative thermal tolerance study was undertaken on two sister species of Euphausiids (Antarctic krills) Euphausia superba and Euphausia crystallorophias. Both are essential components of the Southern Ocean ecosystem, but occupy distinct environmental geographical locations with slightly different temperature regimes. They therefore provide a useful model system for the investigation of adaptations to thermal tolerance. Methodology/Principal Finding Initial CTmax studies showed that E. superba was slightly more thermotolerant than E. crystallorophias. Five Hsp70 mRNAs were characterized from the RNAseq data of both species and subsequent expression kinetics studies revealed notable differences in induction of each of the 5 orthologues between the two species, with E. crystallorophias reacting more rapidly than E. superba. Furthermore, analyses conducted to estimate the evolutionary rates and selection strengths acting on each gene tended to support the hypothesis that diversifying selection has contributed to the diversification of this gene family, and led to the selective relaxation on the inducible C form with its possible loss of function in the two krill species. Conclusions The sensitivity of the epipelagic species E. crystallorophias to temperature variations and/or its adaptation to cold is enhanced when compared with its sister species, E. superba. These results indicate that ice krill could be the first of the two species to be impacted by the warming of coastal waters of the Austral ocean in the coming years due to climate change

    Identifying toxic impacts of metals potentially released during deep-sea mining - a synthesis of the challenges to quantifying risk

    Get PDF
    In January 2017, the International Seabed Authority released a discussion paper on the development of Environmental Regulations for deep-sea mining (DSM) within the Area Beyond National Jurisdiction (the "Area"). With the release of this paper, the prospect for commercial mining in the Area within the next decade has become very real. Moreover, within nations' Exclusive Economic Zones, the exploitation of deep-sea mineral ore resources could take place on very much shorter time scales and, indeed, may have already started. However, potentially toxic metal mixtures may be released at sea during different stages of the mining process and in different physical phases (dissolved or particulate). As toxicants, metals can disrupt organism physiology and performance, and therefore may impact whole populations, leading to ecosystem scale effects. A challenge to the prediction of toxicity is that deep-sea ore deposits include complex mixtures of minerals, including potentially toxic metals such as copper, cadmium, zinc, and lead, as well as rare earth elements. Whereas the individual toxicity of some of these dissolved metals has been established in laboratory studies, the complex and variable mineral composition of seabed resources makes the a priori prediction of the toxic risk of DSM extremely challenging. Furthermore, although extensive data quantify the toxicity of metals in solution in shallow-water organisms, these may not be representative of the toxicity in deep-sea organisms, which may differ biochemically and physiologically and which will experience those toxicants under conditions of low temperature, high hydrostatic pressure, and potentially altered pH. In this synthesis, we present a summation of recent advances in our understanding of the potential toxic impacts of metal exposure to deep-sea meio- to megafauna at low temperature and high pressure, and consider the limitation of deriving lethal limits based on the paradigm of exposure to single metals in solution. We consider the potential for long-term and far-field impacts to key benthic invertebrates, including the very real prospect of sub-lethal impacts and behavioral perturbation of exposed species. In conclusion, we advocate the adoption of an existing practical framework for characterizing bulk resource toxicity in advance of exploitation

    New electroantennography method on a marine shrimp in water

    No full text
    Antennular chemoreception in aquatic decapods is well studied via the recording of single chemoreceptor neuron activity in the antennule, but global responses of the antennule (or antennae in insects) by electroantennography (EAG) has so far been mainly restricted to aerial conditions. We present here a well-established underwater EAG method to record the global antennule activity in the marine shrimp Palaemon elegans in natural (aqueous) conditions. EAG responses to food extracts, recorded as net positive deviations of the baseline, are reproducible, dose-dependent and exhibit sensory adaptation. This new EAG method opens a large field of possibilities for studying in vivo antennular chemoreception in aquatic decapods, in a global approach to supplement current, more specific techniques

    Effects of cold-exposure and subsequent recovery on cellular proliferation with influence of 20-hydroxyecdysone in a lepidopteran cell line (IAL-PID2).

    No full text
    International audienceIn developing insects, the peak level of 20-hydroxyecdysone (20E) initiates a decrease in cyclin expression, which subsequently triggers an arrest of cellular proliferation and the start of differentiation, finally culminating in the moult. We investigated the impact of cold-exposure (4 °C) and recovery (26 °C) on the cell cycle activity of the Plodia interpunctella Lepidoptera cell line IAL-PID2 and on the expression of B-type cyclin (PcycB), ecdysone receptor (B1-isoform; PiEcR-B1), and Hsc70 (PiHsc70) mRNA. Cold-exposure significantly reduced expression of these mRNAs, while their levels increased to above control values during subsequent recovery at the normal growth temperature. When cold-exposed cells were returned to 26 °C, cell cycle activity restarted, but apoptosis was strongly increased. The presence of 20E appeared to increase this apoptotic phenomenon. This result is consistent with the described protective role of 20E against a variety of stressors and with the capacity of 20E to induce cell death in different situations. Here, we illustrate for the first time a connection between 20E treatment and Hsc70 expression during cold-exposure and subsequent recovery in insect cells. Combined with the 20E-induced apoptotic response, our results suggest that regulation of Hsc70 expression by 20E could act in synergy with the control of apoptotic cell death in order to optimize the survival of specific cell populations after a period of cold-exposure

    Comparison of chemoreceptive abilities of the hydrothermal shrimp mirocaris fortunata and the coastal shrimp palaemon elegans

    No full text
    International audienceChemoreception might play an important role for endemic shrimp that inhabit deep and dark hydrothermal vents to find food sources and to locate active edifices that release specific chemicals. We compared the chemosensory abilities of the hydrothermal shrimp Mirocaris fortunata and the coastal related species, Palaemon elegans. The detection of diverse ecologically relevant chemical stimuli by the antennal appendages was measured with electroantennography. The 2 species can detect food-related odor and sulfide, a short-distance stimulus, via both their antennae and antennules. Neither iron nor manganese, considered as long-distance stimuli, was detected by the antennal appendages. Investigation of the ultrastructure of aesthetasc sensilla revealed no specific features of the hydrothermal species regarding innervation by olfactory sensory neurons. Pore-like structures occurring in the aesthetasc cuticle and dense bacterial covering seem to be unique to hydrothermal species, but their potential link to chemoreception remains elusive
    corecore