4,832 research outputs found
Parity-Dependence in the Nuclear Level Density
Astrophysical reaction rates are sensitive to the parity distribution at low
excitation energies. We combine a formula for the energy-dependent parity
distribution with a microscopic-macroscopic nuclear level density. This
approach describes well the transition from low excitation energies, where a
single parity dominates, to high excitations where the two densities are equal.Comment: 4 pages, 3 figures; contribution to Nuclei In The Cosmos VIII, to
appear in Nucl. Phys.
Revision of the derivation of stellar rates from experiment and impact on Eu s-process contributions
The final, definitive version of this paper has been published in Journal of Physics: Conference Series, 665(1), January 5, 2016, and is available on line at doi: 10.1088/1742-6596/665/1/012024 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing LtdA new, general formalism to include experimental data in revised stellar rates is discussed, containing revised uncertainties. Application to the s-process shows that the actual uncertainties in the neutron capture rates can be larger than would be expected from the experimental errors alone. As a specific example for how astrophysical conclusions can depend on the approach selected to derive stellar rates, the 151Eu/(151Eu+153 Eu) abundance ratio from AGB star models is presented. Finally, a recommended workflow for the derivation of stellar rates from experiment is laid out.Peer reviewe
Measurement of (α,n) reaction cross sections of erbium isotopes for testing astrophysical rate predictions
Date of Acceptance: 30/01/2015The γ-process in core-collapse and/or type Ia supernova explosions is thought to explain the origin of the majority of the so-called p nuclei (the 35 proton-rich isotopes between Se and Hg). Reaction rates for γ-process reaction network studies have to be predicted using Hauser-Feshbach statistical model calculations. Recent investigations have shown problems in the prediction of α-widths at astrophysical energies which are an essential input for the statistical model. It has an impact on the reliability of abundance predictions in the upper mass range of the p nuclei. With the measurement of the 164,166Er(α,n)167,169Yb reaction cross sections at energies close to the astrophysically relevant energy range we tested the recently suggested low energy modification of the α+nucleus optical potential in a mass region where γ-process calculations exhibit an underproduction of the p nuclei. Using the same optical potential for the α-width which was derived from combined 162Er(α,n) and 162Er(α,γ) measurement makes it plausible that a low-energy modification of the optical α+nucleus potential is needed.Peer reviewedFinal Accepted Versio
Colloids dragged through a polymer solution: experiment, theory and simulation
We present micro-rheological measurments of the drag force on colloids pulled
through a solution of lambda-DNA (used here as a monodisperse model polymer)
with an optical tweezer. The experiments show a violation of the
Stokes-Einstein relation based on the independently measured viscosity of the
DNA solution: the drag force is larger than expected. We attribute this to the
accumulation of DNA infront of the colloid and the reduced DNA density behind
the colloid. This hypothesis is corroborated by a simple drift-diffusion model
for the DNA molecules, which reproduces the experimental data surprisingly
well, as well as by corresponding Brownian dynamics simulations.Comment: 9 pages, 13 figures, 3 table
Uncertainties In Direct Neutron Capture Calculations Due To Nuclear Structure Models
The prediction of cross sections for nuclei far off stability is crucial in
the field of nuclear astrophysics. For spherical nuclei close to the dripline
the statistical model (Hauser-Feshbach) approach is not applicable and direct
contributions may dominate the cross sections. For neutron-rich, even-even Sn
targets, we compare the resulting neutron capture cross sections when
consistently taking the input for the direct capture calculations from three
different microscopic models. The results underline the sensitivity of cross
sections calculated in the direct model to nuclear structure models which can
lead to high uncertainties when lacking experimental information.Comment: 4 pages, using espcrc1.sty, Proc. Intl. Conf. "Nuclei in the Cosmos
IV", Univ. Notre Dame 1996, Nucl. Phys. A, in press. A postscript version can
also be obtained from http://quasar.physik.unibas.ch/research.htm
Thermal noise influences fluid flow in thin films during spinodal dewetting
Experiments on dewetting thin polymer films confirm the theoretical
prediction that thermal noise can strongly influence characteristic time-scales
of fluid flow and cause coarsening of typical length scales. Comparing the
experiments with deterministic simulations, we show that the Navier-Stokes
equation has to be extended by a conserved bulk noise term to accomplish the
observed spectrum of capillary waves. Due to thermal fluctuations the spectrum
changes from an exponential to a power law decay for large wavevectors. Also
the time evolution of the typical wavevector of unstable perturbations exhibits
noise induced coarsening that is absent in deterministic hydrodynamic flow.Comment: 4 pages, 3 figure
A dynamic density functional theory for particles in a flowing solvent
We present a dynamic density functional theory (dDFT) which takes into accou
nt the advection of the particles by a flowing solvent. For potential flows we
can use the same closure as in the absence of solvent flow. The structure of
the resulting advected dDFT suggests that it could be used for non-potential
flows as well. We apply this dDFT to Brownian particles (e.g., polymer coils)
in a solvent flowing around a spherical obstacle (e.g., a colloid) and compare
the results with direct simulations of the underlying Brownian dynamics.
Although numerical limitations do not allow for an accurate quantitative
check of the advected dDFT both show the same qualitative features. In contrast
to previous works which neglected the deformation of the flow by the obstacle,
we find that the bow-wave in the density distribution of particles in front of
the obstacle as well as the wake behind it are reduced dramatically. As a
consequence the friction force exerted by the (polymer) particles on the
colloid can be reduced drastically.Comment: 7 pages, 5 figures, 2 tables, submitte
Porous silicon formation and electropolishing
Electrochemical etching of silicon in hydrofluoride containing electrolytes
leads to pore formation for low and to electropolishing for high applied
current. The transition between pore formation and polishing is accompanied by
a change of the valence of the electrochemical dissolution reaction. The local
etching rate at the interface between the semiconductor and the electrolyte is
determined by the local current density. We model the transport of reactants
and reaction products and thus the current density in both, the semiconductor
and the electrolyte. Basic features of the chemical reaction at the interface
are summarized in law of mass action type boundary conditions for the transport
equations at the interface. We investigate the linear stability of a planar and
flat interface. Upon increasing the current density the stability flips either
through a change of the valence of the dissolution reaction or by a nonlinear
boundary conditions at the interface.Comment: 18 pages, 8 figure
Nucleosynthesis Basics and Applications to Supernovae
This review concentrates on nucleosynthesis processes in general and their
applications to massive stars and supernovae. A brief initial introduction is
given to the physics in astrophysical plasmas which governs composition
changes. We present the basic equations for thermonuclear reaction rates and
nuclear reaction networks. The required nuclear physics input for reaction
rates is discussed, i.e. cross sections for nuclear reactions,
photodisintegrations, electron and positron captures, neutrino captures,
inelastic neutrino scattering, and beta-decay half-lives. We examine especially
the present state of uncertainties in predicting thermonuclear reaction rates,
while the status of experiments is discussed by others in this volume (see M.
Wiescher). It follows a brief review of hydrostatic burning stages in stellar
evolution before discussing the fate of massive stars, i.e. the nucleosynthesis
in type II supernova explosions (SNe II). Except for SNe Ia, which are
explained by exploding white dwarfs in binary stellar systems (which will not
be discussed here), all other supernova types seem to be linked to the
gravitational collapse of massive stars (M8M) at the end of their
hydrostatic evolution. SN1987A, the first type II supernova for which the
progenitor star was known, is used as an example for nucleosynthesis
calculations. Finally, we discuss the production of heavy elements in the
r-process up to Th and U and its possible connection to supernovae.Comment: 52 pages, 20 figures, uses cupconf.sty (included); to appear in
"Nuclear and Particle Astrophysics", eds. J. Hirsch., D. Page, Cambridge
University Pres
Recommended from our members
Assessment of novel binocular colour, motion and contrast tests in glaucoma
The effects of glaucoma on binocular visual sensitivity for the detection of various stimulus attributes are investigated at the fovea and in four paracentral retinal regions. The study employed a number of visual stimuli designed to isolate the processing of various stimulus attributes. We measured absolute contrast detection thresholds and functional contrast sensitivity by using Landolt ring stimuli. This psychophysical Landolt C-based contrast test of detection and gap discrimination allowed us to test parafoveally at 6 ° from fixation and foveally by employing interleaved testing locations. First-order motion perception was examined by using moving stimuli embedded in static luminance contrast noise. Red/green (RG) and yellow/blue (YB) colour thresholds were measured with the Colour Assessment and Diagnosis (CAD) test, which utilises random dynamic luminance contrast noise (± 45 %) to ensure that only colour and not luminance signals are available for target detection. Subjects were normal controls (n = 65) and glaucoma patients with binocular visual field defects (n = 15) classified based on their Humphrey Field Analyzer mean deviation (MD) scores. The impairment of visual function varied depending on the stimulus attribute and location tested. Progression of loss was noted for all tests as the degree of glaucoma increased. For subjects with mild glaucoma (MD −0.01 dB to −6.00 dB) significantly more data points fell outside the normal age-representative range for RG colour thresholds than for any other visual test, followed by motion thresholds. This was particularly the case for the parafoveal data compared with the foveal data. Thus, a multifaceted measure of binocular visual performance, incorporating RG colour and motion test at multiple locations, might provide a better index for comparison with quality of life measures in glaucoma
- …
